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ABSTRACT 

The subject of t h i s  note i s  Tarjan's aZgorithm for finding 
an optimum branching in a directed graph. 
ed out, namely (i) an incorrect cZaim invoZving branching uni- 
queness, and (ii) an imprecise way of updating edge vaZues i n  
each i terat ion.  
val idi ty  of the algorithm. I t  is s h m  here that  they may be 
f ixed v i a  a simpZe modification, which Zeaves unchanged the 
overall time and space performances. 

!Two errors are point- 

These two inaccuracies do not a f f ec t  the basic 

I n  the paper on "Finding Optimum Branchings" by R.E. Tarjan 
[8], an e f f i c i en t  implementation of the algorithm [2,5,61 f o r  
computing an optimum branching i n  a directed graph G = (V,E) i s  
described. Algorithm BRANCH of [81 constructs a subgraph 
G ( H )  = (V,H) of G. When the algorithm i s  completed, it i s  
claimed t h a t  an optimum branching of G can be extracted from H 
v ia  a depth f i r s t  search. This claim is  based upon lemma 2 ,  
which states t h a t  there  is always a unique simple path i n  G ( H )  
leading from any vertex v of any root component S of G ( H )  t o  
any vertex w of the weakly connected component W containing S. 
However, lemma 2 i s  incorrect,  as shown by the following counter- 
example. 

Let us  apply algorithm BRANCH t o  the graph G i n  f ig .  1 (a ) ,  
where numbers on edges a re  values. Fig. l ( b )  , (c)  and (d) re- 
present a possible sequence of graphs G ( H )  obtained a f t e r  each 
execution of s tep G8. 
w=3 i n  G ( H )  of f i g .  l ( d )  , there a re  tWo simple paths (of d i f fe r -  
ent  values) from v t o  w. Hence, a f t e r  delet ing edge ( 4 , l )  from 
G ( H ) ,  a depth f i r s t  search on the resu l t ing  graph cannot guar- 
antee t o  ex t rac t  from it an optimum branching of G. Neverthe- 

I f  we take S = {1,2,3,4) = W ,  v=l  and 
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less, s ince  t h e  r e s u l t s  of [6,7] imply t h a t  t h e  f i n a l  set H 
does contain an optimum branching of  G ,  t h e  method f o r  f ind ing  
GCH) i s  va l id ,  b u t  t h e  incor rec tness  of lemma 2 requi res  tha t  
w e  update and memorize, a f te r  each update of H, the nested 
shr inking s t r u c t u r e  of G ( H ) .  
ward expansion of t he  root components, thus  co r rec t ly  recover- 
i ng  an optimum branching. Many bookkeeping mechanisms could 
be u t i l i z e d  t o  this purpose. One of them, having the des i r -  
ab le  property of  not  a f f e c t i n g  the complexity evaluat ions of 
[81, is  here out l ined  and discussed i n  d e t a i l  i n  [31. 

This a l l o w s  us to  perform a back- 
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Ptg. 1 
A t  t he  beginning o f  BRANCH, a forest F is  i n i t i a l i z e d  t o  

be an empty f o r e s t ,  wi th  no nodes and no arcs. Each t i m e  an 
edge !u,v) i s  added t o  H i n  BRANCH, a new node is  a l s o  added 
to F ,  SO that  the  nodes o f  F are maintained to  r ep resen t  t h e  
edges i n  H.  The a rc s  of  F are constructed as follows. When- 
ever (u,v) i s  chosen t o  e n t e r  a root component S containing 
more than one ver tex,  l e t  (xl ,yl) ,  (x2,y2) , ..., ( s , y k )  be the  

sequence of edges determined i n  BRANCH, s t e p  G5, such that  edge 
(\ ,yk) w a s  added t o  H t o  form S.  

a r c  is  added t o  F, d i r ec t ed  from node (u,v) to  node (xi,yi) ,  so 

t h a t  (xi,yi) i s  a chiZd of (u,v) i n  F and (u,v)  i s  the parent 
of (xi ,yi) .  

(u ,v)  is  set from v t o  the  leaf (u ,v ) .  During the  cons t ruc t ion  
of  F w e  also need t o  keep t r ack  of  t he  set  N of a l l  PO06 nodes 
of  F,  i .e .  t h e  nodes which have no parent .  

Fig. 2 i l l u s t r a t e s  t he  f i n a l  f o r e s t  F obtained i n  t h e  ex- 
ample of f i g .  1. Note t h a t ,  s ince  H does no t  contain more than 
2n-2 edges (n=lvl)  [8] , t h e  t o t a l  number o f  nodes and a r c s  of F 
is O(n) .  
complexity of BRANCH. 

Then, f o r  each i, l < i < k ,  -- an 

In  case S contains  a unique ver tex ,  a p o i n t e r  A(v) = 

Therefore the computation of F does no t  increase  t h e  
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Fig. 2 

Once the algorithm i s  completed, an optimum branching of G 
can be obtained from F i n  the following way. 
of root ver t ices  which algorithm ROOT would select i f  applied 
t o  a l l  root components of G ( H ) .  ( R  = {min(i) I i ~ r s e t ~ :  see 
section 3 of [81.) I n i t i a l i z e  a void set  B, i n i t i a l i z e  N t o  
the set  of root nodes of F and repeat steps L1-L3 below un- 
til R = N = ~ .  

Algorithm LEAF: 

L1: I f  R # pI ,  delete  a root vertex v from R ,  else pick any 

L2: Ident i fy  the (possibly t r i v i a l )  path P i n  f leading from 

L3: Delete from F a l l  nodes of P and a l l  a rcs  directed out  of 

L e t  R be the  set  

root node (w,v) € N and add it t o  B. 

a root node t o  the  leaf  (u,v) = XCv) . 
these nodes ( t h i s  s tep  updates the set N of the  root nodes) 

The ident i f ica t ion  of s tep  L2 can be eas i ly  made by t rac-  
ing P i n  the child-to-parent direct ion,  u n t i l  a root  node i s  
found. 

As it can be seen i n  the example of f ig .  1 and 2 ,  the  f i n a l  
set B obtained by algorithm LEAF is  { ( 1 , 2 ) ,  ( 2 , 3 ) ,  ( 2 , 4 )  
i den t i f i e s  an optimum branching of G and shows, f o r  t h i s  ex- 
ample, the correctness of the above algorithm. Its formal proof 
i s  obtained by induction and can be found i n  [3] f o r  the case of 
spanning arborescences. Since algorithm LEAF consis ts  essenti-  
a l l y  of v i s i t i ng  each node of F exactly once, i t s  complexity i s  
O h ) .  Hence a l l  the complexity r e su l t s  given i n  [81 are  s t i l l  
valid.  

i n  section 3, it has t o  be pointed out  t h a t  c(x,y)  and c ( i , j f  
should r e f e r  t o  values updated as i n  s tep  G7, ra ther  than the 
or ig ina l  values of the given digraph. 
can be overcome by noting [9] t h a t  the only values which are  

which 

For what concerns the version of algorithm BRANCH described 

This fur ther  d i f f i cu l ty  
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used by the  algorithm are those of edges either about t o  be 
added t o  H ,  o r  a l ready i n  H bu t  no t  i n  a s t rong  component. 
edge i s  added t o  H only when it is  re turned  by a c a l l  on MAX. 
By using an idea of 1 1 3 ,  MAX can be e a s i l y  modified t o  r e tu rn  
the updated value of  t h e  edge, as w e l l  as the  edge i t s e l f .  
(See E41 f o r  a discussion of how t o  implement MAX, ADD and 

QUNION.) 
a f f e c t  i t s  value.(Step G7 only updates unexamined edges.) 

An 

Once an edge i s  added t o  H I  f u r t h e r  updates do not  
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