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ABSTRACT

The subject of this note igs Tarjan's algorithm for finding
an optimum branching in a directed graph. Two errors are point-
ed out, namely (1) an imcorrect claim involving branching uni-
queness, and (11) an imprecise way of updating edge values in
each iteration. These two inaccuracies do not affect the basic
validity of the algorithm. It is shown here that they may be
fixed via a simple modification, which leaves unchanged the
overall time and space performances.

In the paper on "Finding Optimum Branchings" by R.E. Tarjan
[8], an efficient implementation of the algorithm [2,5,6] for
computing an optimum branching in a directed graph G = (V,E) is
described. Algorithm BRANCH of [8] constructs a subgraph
G(H) = (V,H) of G. When the algorithm is completed, it is
claimed that an optimum branching of G can be extracted from H
via a depth first search. This claim is based upon lemma 2,
which states that there is always a unigue simple path in G(H)
leading from any vertex v of any root component S of G(H) to
any vertex w of the weakly connected component W containing S.
However, lemma 2 is incorrect, as shown by the following counter-
example.

Let us apply algorithm BRANCH to the graph G in fig. 1l(a),
where numbers on edges are values. Fig. 1(b), (c¢) and (d) re-
present a possible sequence of graphs G(H) obtained after each
execution of step G8. If we take S = {1,2,3,4} =W, v=1 and
w=3 in G(H) of fig. 1(d), there are two simple paths (of differ-
ent values) from v to w. Hence, after deleting edge (4,1) from
G(H), a depth first search on the resulting graph cannot guar-
antee to extract from it an optimum branching of G. Neverthe-
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less, since the results of [6,7] imply that the final set H
does contain an optimum branching of G, the method for finding
G(H) is valid, but the incorrectness of lemma 2 requires that
we update and memorize, after each update of H, the nested
shrinking structure of G(H). This allows us to perform a back-
ward expansion of the root components, thus correctly recover-
ing an optimum branching. Many bookkeeping mechanisms could
be utilized to this purpose. One of them, having the desir-
able property of not affecting the complexity evaluations of
{81, is here outlined and discussed in detail in [3].
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At the beginning of BRANCH, a forest F is initialized to
be an empty forest, with no #nodes and no ares., Each time an
edge {u,v) is added to H in BRANCH, a new node is also added
to F, so that the nodes of F are maintained to represent the
edges in H. The arcs of F are constructed as follows. When-—
ever (u,v) is chosen to enter a root component S containing
more than one vertex, let (xl,yl), (xz,yz),...,(xk,yk) be the

sequence Of edges determined in BRANCH, step G5, such that edge
(Xk'yk) was added to H to form S. Then, for each i, 1<i<k, an

arc is added to F, directed from node (u,v) to node (xi,yi), so
that (xi,yi) is a child of (u,v) in F and (u,v) is the pavent
of (xi,yi). In case S contains a unique vertex, a pointer \(v)

(u,v) is set from v to the leaf (u,v). During the construction
of F we also need to keep track of the set N of all root nodes
of F, i.e. the nodes which have no parent.

Fig. 2 illustrates the final forest F obtained in the ex-
ample of fig. 1. Note that, since H does not contain more than
2n-2 edges (n=|V|) [8], the total number of nodes and arcs of F
is 0(n). Therefore the computation of F does not increase the
complexity of BRANCH.
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Once the algorithm is completed, an optimum branching of G
can be obtained from F in the following way. Let R be the set
of root vertices which algorithm ROOT would select if applied
to all root components of G(H). (R = {min(i)|i€:rset}: see
section 3 of [8].) Initialize a void set B, initialize N to
the set of root nodes of F and repeat steps L1-L3 below un-
til R=N=(g.

Algorithm LEAF:

Ll: If R # @, delete a root vertex v from R, else pick any
root node (w,v) € N and add it to B.

L2: Identify the (possibly trivial) path P in F leading from
a root node to the leaf (u,v) = A(v).

L3: Delete from F all nodes of P and all arcs directed out of
these nodes (this step updates the set N of the root nodes).

The identification of step L2 can be easily made by trac-
ing P in the child-to-parent direction, until a root node is
found.

As it can be seen in the example of fig. 1 and 2, the final
set B obtained by algorithm LEAF is {(1,2),(2,3),(2,4)} which
identifies an optimum branching of G and shows, for this ex-
ample, the correctness of the above algorithm. Its formal proof
is obtained by induction and can be found in [3] for the case of
spanning arborescences. Since algorithm LEAF consists essenti-
ally of visiting each node of F exactly once, its complexity is
0(n). Hence all the complexity results given in [8] are still
valid.

For what concerns the version of algorithm BRANCH described
in section 3, it has to be pointed out that c{x,y) and c(i,])
should refer to values updated as in step G7, rather than the
original values of the given digraph. This further difficulty
can be overcome by noting [9] that the only values which are
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used by the algorithm are those of edges either about to be
added to H, or already in H but not in a strong component. An
edge is added to H only when it is returned by a call on MAX.
By using an idea of [1], MAX can be easily modified to return
the updated value of the edge, as well as the edge itself.
(See [4] for a discussion of how to implement MAX, ADD and
QUNION.) Once an edge is added to H, further updates do not
affect its value.(Step G7 only updates unexamined edges.)
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