
Robotic exploration

Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague

Motivation scenarios

https://www.youtube.com/watch?v=P3uT4gHEFHw

Finding precious metals, water sources, etc.

https://www.youtube.com/watch?v=P3uT4gHEFHw

Motivation scenarios

Finding and rescuing people in debris
Source: robohub.org

Motivation scenarios

Mapping radioactive zones

*Groves, K.; Hernandez, E.; West, A.; Wright, T.; Lennox, B. Robotic Exploration of an Unknown
Nuclear Environment Using Radiation Informed Autonomous Navigation. Robotics 2021, 10, 78.

Motivation scenarios

www.youtube.com/watch?v=Hj7xt7isOWc

Mapping radioactive zones

*Groves, K.; Hernandez, E.; West, A.; Wright, T.; Lennox, B. Robotic Exploration of an Unknown
Nuclear Environment Using Radiation Informed Autonomous Navigation. Robotics 2021, 10, 78.

Terminology

Exploration

• the activity of searching and finding out about something (Cambridge
English dictionary)

• . . . is a trip, but it’s more than just a vacation — it’s going somewhere to
examine and discover new things (vocabulary.com)

Robotic exploration

• use a robot to maximize knowledge over a particular area

• Is there a precious metal? Where are the victims? Is there a
radioactivity?

• Fundamental problem of robotics
• Single robot vs. multi-robot exploration
• Practical problem needed in many applications

How to approach exploration
Reactive

• measure, evaluate, act, measure, evaluate, . . .
• not optimal (e.g., time/energy consuming)
• can lead to cycles

Decision-based

• build a model of the environment
• make decision using the model
• more efficient, can be optimized
• extra effort to make the model of the

environment

How to represent/model environment?

• Many approaches
• Model should always be selected according

given application

Example of models of environments I
Low-level data

• Raw sensor data (e.g. LIDAR values, images)
• Neural network models (weights+topologies),

learned policies (Reinforcement learning), rosbag
• File formats: (txt,bin,SQL,HDF,. . .)
• They are specific to given task/environment
• Hard to interpret by humans
• Poor generalization

Example of models of environments I
Low-level data

• Raw sensor data (e.g. LIDAR values, images)
• Neural network models (weights+topologies),

learned policies (Reinforcement learning), rosbag
• File formats: (txt,bin,SQL,HDF,. . .)
• They are specific to given task/environment
• Hard to interpret by humans
• Poor generalization

Example of models of environments I
Low-level data

• Raw sensor data (e.g. LIDAR values, images)
• Neural network models (weights+topologies),

learned policies (Reinforcement learning), rosbag
• File formats: (txt,bin,SQL,HDF,. . .)
• They are specific to given task/environment
• Hard to interpret by humans
• Poor generalization

T. Zhao and Y. Wang, "A neural-network based autonomous navigation system using mobile
robots", International Conference on Control Automation Robotics & Vision, 2012

Example of models of environments II
Processed data

• Interpreted sensor data (e.g. obstacles, walls,
ground, free-space, . . .)

• Good generalization
• Can be easily interpreted by humans

• These models are simply known as maps

Maps in robotics
• Map is the model of the world/environment
• Many types (2D/3D, grid, polygonal, . . .)
• Usually contain geometric features (e.g. walls, ground,

obstacles)
• Necessary for decision making (e.g. planning,

navigation, inspections, . . .)

Properties

• Supported operations (e.g. merging maps, adding new
information, deleting obstacles, . . .)

• Computational complexity of these procedures
• Memory requirements
• Precision
• Robustness (with respect to numerical errors)
• There is no ‘universal’ map
• One should always choose a map suitable for the given

application

C

E

A
B

D

Grid maps

• 2D or 3D array (grid) of cells
• Binary maps: 0/1 (obstacle, free spaces)
• Probability: 0–1 (0=free space, 1=obstacle)

• occupancy grid
• often used for integration of sensor data, SLAM

3 Metric information (distance/angle/area . . .)
3 Easy implementation
3 Efficient search for obstacle cells, nearest obstacle cell, . . .
3 Straightforward update of cells & map merging
3 Integration of data from different sensors
7 High memory requirements

• depends on environment size & map resolution
• practical limit to 2D and 3D environments

5VdzKHreB_s

Grid maps

Source: Robotic Dataset repository (Radish): fr097

Line maps
• 2D worlds, suitable for structured indoor scenes
• Obstacles are represented by lines
• Compact way to store range-sensor measurements

(xi , yi)

tan 2ϕ =
−2
∑

i (x̄ − xi)(ȳ − yi)∑
i

(
(ȳ − yi)

2 − (x̄ − xi)
2
)

r = x̄ cosϕ + ȳ sinϕ

• Can be extended for 3D planes
3 Memory efficient, easy to process, metric information
3 Fast tests for collisions, point location
7 What if data points are generated by multiple linear

structures?

• How many lines are needed?
• How to assign points to individual lines?

r
ϕ

Line maps: fitting multiple lines

Split and merge recursive approach

1 Compute line for a given set of points (x1, y1) . . . (xn, yn)
2 Find the most distant point i from the line, its distance is

d
3 If d is smaller than a threshold, return line
4 Otherwise, split points to two groups (x1, y1), . . . (xi , yi)

and (xi+1, yi+1), . . . (xn, yn) and proceed recursively on
each group

• Easy to implement, fast

• The result is not optimal (does not minimize square
distances of points from lines)

* D.H. Douglas, T.K. Peucker: Algorithms for the reduction of the number of
points required to represent a line or its caricature, Cdn. Cartogr. 10(2), 1973

d

d

Polygonal maps
• 2D worlds
• Obstacle is represented by polygon

(x1, y1), (x2, y2), . . . , (xn, yn)

• (xi , yi) are vertices
• The map is the collection of obstacles
• Simple polygon: does not intersect itself, no holes
• Polygons with holes: contour + one or more holes
3 Memory efficient, easy to process, metric information
3 Fast tests for collisions, point location
7 Numerical stability of (some) algorithms
7 Number of vertices can dramatically grow if map is built

from (unfiltered) sensor data

Map ∼ 100× 5 m, ∼1k vertices

0,0 3,0

3,3

1,2

Convex

0,0 3,0

3,3

2,1

Non-convex

Polygon from Lidar

What kind of maps are using humans?

• grid, occupancy grid, polygonal, line-map . . . ?

What kind of maps are using humans?

• grid, occupancy grid, polygonal, line-map . . . ?

Topological maps
• Abstract map, lack of geometric and metric features
• Represented by a graph

• Vertices are (distinguishable) places
• Edges connecting places between the robot can navigate

• Scalable, used for high-level planning

C

E

A
B

D

A

E

DC

B

Topological maps
• Abstract map, lack of geometric and metric features
• Represented by a graph

• Vertices are (distinguishable) places
• Edges connecting places between the robot can navigate

• Scalable, used for high-level planning

Topological maps
• Abstract map, lack of geometric and metric features
• Represented by a graph

• Vertices are (distinguishable) places
• Edges connecting places between the robot can navigate

• Scalable, used for high-level planning

Maps for 3D worlds

• Elevation (2.5D grid map): each cell describes altitude

• Pointclouds, octomap

Occupancy grid
• A variant of grid map

• Known cell: value of ci ≥ 0 (contains prob. of being
occupied)

• Unknown cell: value of ci = −1

• Interpretation of known cells:

• Free-space (no obstacle): p(occupied) < T
• Obstacle: p(occupied) > T
• where T is a threshold, e.g. 0.8

• Frontier: the border between known and unknown
regions

• Frontier cell

• is a free-space cell that is incident with an unknown
cell

• it may not be reachable

obstacle

free-space

unknown

frontier

F F

* YAMAUCHI, B., et al. Frontier-based exploration using multiple robots. Agents. 1998; 47-53.

Robotic exploration
• Robot is gathering (desired) information in an environment
• Search & rescue, searching for Barbie, precious metals, etc.
• We used model of the environment (map) to do it efficiently
• Often used solution: SLAM (Simultaneous localization and mapping)

Challenges

• How to represent the map
• How to update it
• How to localize
• How to determine where to go
• How to get there

https://www.youtube.com/watch?v=B-dSyKx4Fsc

https://www.youtube.com/watch?v=B-dSyKx4Fsc

Frontier-based exploration

Principle: use a frontier as a temporary goal

1 Identify frontiers in the map
2 Filter out unreachable frontiers (if any)
3 Select a frontier and go there
4 Goto 1 until no frontier exists

Notes

• Unreachable frontiers detected using path planning
• Consider navigating to the closest frontier
• Consider detecting frontiers during movement of the

robot
• Detection of frontiers should be fast

obstacle
free-space
unknown
frontier

* YAMAUCHI, B., et al. Frontier-based exploration using multiple robots. Agents. 1998; 47-53.
* KEIDAR, Matan; KAMINKA, Gal A. Ecient frontier detection for robot exploration. The
International Journal of Robotics Research, 2014, 33.2: 215-236.

Frontiers detection
• Image-based

• Convert occupancy grid to binary image, run edge
detection

• Wavefront Frontier Detector (WFD) (* Keidar)

• Graph-search method to detect frontiers
• Run BFS from actual position of the robot
• This BFS explores only free cells (i.e., also frontier

cells)
• Run another BFS if frontier cell is visited
• The second BFS explores only frontier cells
• The goal of second BFS is to extract all cells

belonging to the actually detected frontier

• Both BFS share open/close list

obstacle
free-space
unknown
frontier

* YAMAUCHI, B., et al. Frontier-based exploration using multiple robots. Agents. 1998; 47-53.
* KEIDAR, Matan; KAMINKA, Gal A. Ecient frontier detection for robot exploration. The
International Journal of Robotics Research, 2014, 33.2: 215-236.

Frontier-based exploration

1 O = { robot position }
2 while |O| ≥ 0 do
3 pos = O.pop() // open list for main BFS
4 mark pos as known
5 for c in neighbors(pos) do
6 if c is explored or c is obstacle then
7 continue

8 if c is frontier cell then
9 Of = {c} // open list for second BFS

10 while |Of | ≥ 0 do
11 posf = Of .pop()
12 mark posf as known
13 for cf in neighbors(posf) do
14 if cf is not frontier cell or cf is known

then
15 continue

16 Of .push(cf)

17 else
18 O.push(c)

Explanation of variables
• pos,posf = coordinates of a cell in grid, e.g. (x , y)

• robot position = actual position of the robot in the grid
• O: open list for main BFS search — free cells
• Of : open list for exploration of individual frontiers — frontier cells

Improved Frontier-based exploration

Several ideas to get better (faster) exploration

• Consider cost of path to the frontier for frontier selection
• Consider how much are is ‘behind’ the frontier (aka ’view’), visit the most

promising frontiers first→ next best view approach
• Combination of above

* Gonzalez-Banos, H. H.,Latombe, J. C. (2002). Navigation strategies for exploring indoor
environments. The International Journal of Robotics Research, 21(10-11), 829-848.

Frontier-based exploration: resources

* YAMAUCHI, Brian, et al. Frontier-based exploration using multiple
robots. In: Agents. 1998. p. 47-53.

* TOPIWALA, Anirudh; INANI, Pranav; KATHPAL, Abhishek. Frontier
Based Exploration for Autonomous Robot. arXiv preprint
arXiv:1806.03581, 2018

* USLU, Erkan, et al. Implementation of frontier-based exploration
algorithm for an autonomous robot. In: 2015 International Symposium
on Innovations in Intelligent SysTems and Applications (INISTA). IEEE,
2015. p. 1-7.

* KEIDAR, Matan; KAMINKA, Gal A. Ecient frontier detection for robot
exploration. The International Journal of Robotics Research, 2014, 33.2:
215-236.

