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Motivation scenarios

https://www.youtube.com/watch?v=P3uT4gHEFHw

Finding precious metals, water sources, etc.

https://www.youtube.com/watch?v=P3uT4gHEFHw


Motivation scenarios

Finding and rescuing people in debris
Source: robohub.org



Motivation scenarios

Mapping radioactive zones

*Groves, K.; Hernandez, E.; West, A.; Wright, T.; Lennox, B. Robotic Exploration of an Unknown
Nuclear Environment Using Radiation Informed Autonomous Navigation. Robotics 2021, 10, 78.



Motivation scenarios

www.youtube.com/watch?v=Hj7xt7isOWc

Mapping radioactive zones

*Groves, K.; Hernandez, E.; West, A.; Wright, T.; Lennox, B. Robotic Exploration of an Unknown
Nuclear Environment Using Radiation Informed Autonomous Navigation. Robotics 2021, 10, 78.



Terminology

Exploration

• the activity of searching and finding out about something (Cambridge
English dictionary)

• . . . is a trip, but it’s more than just a vacation — it’s going somewhere to
examine and discover new things (vocabulary.com)

Robotic exploration

• use a robot to maximize knowledge over a particular area

• Is there a precious metal? Where are the victims? Is there a
radioactivity?

• Fundamental problem of robotics
• Single robot vs. multi-robot exploration
• Practical problem needed in many applications



How to approach exploration
Reactive

• measure, evaluate, act, measure, evaluate, . . .
• not optimal (e.g., time/energy consuming)
• can lead to cycles

Decision-based

• build a model of the environment
• make decision using the model
• more efficient, can be optimized
• extra effort to make the model of the

environment

How to represent/model environment?

• Many approaches
• Model should always be selected according

given application



Example of models of environments I
Low-level data

• Raw sensor data (e.g. LIDAR values, images)
• Neural network models (weights+topologies),

learned policies (Reinforcement learning), rosbag
• File formats: (txt,bin,SQL,HDF,. . . )
• They are specific to given task/environment
• Hard to interpret by humans
• Poor generalization
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T. Zhao and Y. Wang, "A neural-network based autonomous navigation system using mobile
robots", International Conference on Control Automation Robotics & Vision, 2012



Example of models of environments II
Processed data

• Interpreted sensor data (e.g. obstacles, walls,
ground, free-space, . . . )

• Good generalization
• Can be easily interpreted by humans

• These models are simply known as maps



Maps in robotics
• Map is the model of the world/environment
• Many types (2D/3D, grid, polygonal, . . . )
• Usually contain geometric features (e.g. walls, ground,

obstacles)
• Necessary for decision making (e.g. planning,

navigation, inspections, . . . )

Properties

• Supported operations (e.g. merging maps, adding new
information, deleting obstacles, . . . )

• Computational complexity of these procedures
• Memory requirements
• Precision
• Robustness (with respect to numerical errors)
• There is no ‘universal’ map
• One should always choose a map suitable for the given

application
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Grid maps

• 2D or 3D array (grid) of cells
• Binary maps: 0/1 (obstacle, free spaces)
• Probability: 0–1 (0=free space, 1=obstacle)

• occupancy grid
• often used for integration of sensor data, SLAM

3 Metric information (distance/angle/area . . . )
3 Easy implementation
3 Efficient search for obstacle cells, nearest obstacle cell, . . .
3 Straightforward update of cells & map merging
3 Integration of data from different sensors
7 High memory requirements

• depends on environment size & map resolution
• practical limit to 2D and 3D environments

5VdzKHreB_s



Grid maps

Source: Robotic Dataset repository (Radish): fr097



Line maps
• 2D worlds, suitable for structured indoor scenes
• Obstacles are represented by lines
• Compact way to store range-sensor measurements
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• Can be extended for 3D planes
3 Memory efficient, easy to process, metric information
3 Fast tests for collisions, point location
7 What if data points are generated by multiple linear

structures?

• How many lines are needed?
• How to assign points to individual lines?

r
ϕ



Line maps: fitting multiple lines

Split and merge recursive approach

1 Compute line for a given set of points (x1, y1) . . . (xn, yn)
2 Find the most distant point i from the line, its distance is

d
3 If d is smaller than a threshold, return line
4 Otherwise, split points to two groups (x1, y1), . . . (xi , yi )

and (xi+1, yi+1), . . . (xn, yn) and proceed recursively on
each group

• Easy to implement, fast

• The result is not optimal (does not minimize square
distances of points from lines)

* D.H. Douglas, T.K. Peucker: Algorithms for the reduction of the number of
points required to represent a line or its caricature, Cdn. Cartogr. 10(2), 1973
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Polygonal maps
• 2D worlds
• Obstacle is represented by polygon

(x1, y1), (x2, y2), . . . , (xn, yn)

• (xi , yi ) are vertices
• The map is the collection of obstacles
• Simple polygon: does not intersect itself, no holes
• Polygons with holes: contour + one or more holes
3 Memory efficient, easy to process, metric information
3 Fast tests for collisions, point location
7 Numerical stability of (some) algorithms
7 Number of vertices can dramatically grow if map is built

from (unfiltered) sensor data

Map ∼ 100× 5 m, ∼1k vertices
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What kind of maps are using humans?

• grid, occupancy grid, polygonal, line-map . . . ?



What kind of maps are using humans?
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Topological maps
• Abstract map, lack of geometric and metric features
• Represented by a graph

• Vertices are (distinguishable) places
• Edges connecting places between the robot can navigate

• Scalable, used for high-level planning
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Maps for 3D worlds

• Elevation (2.5D grid map): each cell describes altitude

• Pointclouds, octomap



Occupancy grid
• A variant of grid map

• Known cell: value of ci ≥ 0 (contains prob. of being
occupied)

• Unknown cell: value of ci = −1

• Interpretation of known cells:

• Free-space (no obstacle): p(occupied) < T
• Obstacle: p(occupied) > T
• where T is a threshold, e.g. 0.8

• Frontier: the border between known and unknown
regions

• Frontier cell

• is a free-space cell that is incident with an unknown
cell

• it may not be reachable

obstacle

free-space

unknown

frontier

F F

* YAMAUCHI, B., et al. Frontier-based exploration using multiple robots. Agents. 1998; 47-53.



Robotic exploration
• Robot is gathering (desired) information in an environment
• Search & rescue, searching for Barbie, precious metals, etc.
• We used model of the environment (map) to do it efficiently
• Often used solution: SLAM (Simultaneous localization and mapping)

Challenges

• How to represent the map
• How to update it
• How to localize
• How to determine where to go
• How to get there

https://www.youtube.com/watch?v=B-dSyKx4Fsc

https://www.youtube.com/watch?v=B-dSyKx4Fsc


Frontier-based exploration

Principle: use a frontier as a temporary goal

1 Identify frontiers in the map
2 Filter out unreachable frontiers (if any)
3 Select a frontier and go there
4 Goto 1 until no frontier exists

Notes

• Unreachable frontiers detected using path planning
• Consider navigating to the closest frontier
• Consider detecting frontiers during movement of the

robot
• Detection of frontiers should be fast

obstacle
free-space
unknown
frontier

* YAMAUCHI, B., et al. Frontier-based exploration using multiple robots. Agents. 1998; 47-53.
* KEIDAR, Matan; KAMINKA, Gal A. Ecient frontier detection for robot exploration. The
International Journal of Robotics Research, 2014, 33.2: 215-236.



Frontiers detection
• Image-based

• Convert occupancy grid to binary image, run edge
detection

• Wavefront Frontier Detector (WFD) (* Keidar)

• Graph-search method to detect frontiers
• Run BFS from actual position of the robot
• This BFS explores only free cells (i.e., also frontier

cells)
• Run another BFS if frontier cell is visited
• The second BFS explores only frontier cells
• The goal of second BFS is to extract all cells

belonging to the actually detected frontier

• Both BFS share open/close list

obstacle
free-space
unknown
frontier

* YAMAUCHI, B., et al. Frontier-based exploration using multiple robots. Agents. 1998; 47-53.
* KEIDAR, Matan; KAMINKA, Gal A. Ecient frontier detection for robot exploration. The
International Journal of Robotics Research, 2014, 33.2: 215-236.



Frontier-based exploration

1 O = { robot position }
2 while |O| ≥ 0 do
3 pos = O.pop() // open list for main BFS
4 mark pos as known
5 for c in neighbors(pos) do
6 if c is explored or c is obstacle then
7 continue

8 if c is frontier cell then
9 Of = {c} // open list for second BFS

10 while |Of | ≥ 0 do
11 posf = Of .pop()
12 mark posf as known
13 for cf in neighbors(posf ) do
14 if cf is not frontier cell or cf is known

then
15 continue

16 Of .push(cf )

17 else
18 O.push(c)



Explanation of variables
• pos,posf = coordinates of a cell in grid, e.g. (x , y)

• robot position = actual position of the robot in the grid
• O: open list for main BFS search — free cells
• Of : open list for exploration of individual frontiers — frontier cells



Improved Frontier-based exploration

Several ideas to get better (faster) exploration

• Consider cost of path to the frontier for frontier selection
• Consider how much are is ‘behind’ the frontier (aka ’view’), visit the most

promising frontiers first→ next best view approach
• Combination of above

* Gonzalez-Banos, H. H.,Latombe, J. C. (2002). Navigation strategies for exploring indoor
environments. The International Journal of Robotics Research, 21(10-11), 829-848.



Frontier-based exploration: resources

* YAMAUCHI, Brian, et al. Frontier-based exploration using multiple
robots. In: Agents. 1998. p. 47-53.

* TOPIWALA, Anirudh; INANI, Pranav; KATHPAL, Abhishek. Frontier
Based Exploration for Autonomous Robot. arXiv preprint
arXiv:1806.03581, 2018

* USLU, Erkan, et al. Implementation of frontier-based exploration
algorithm for an autonomous robot. In: 2015 International Symposium
on Innovations in Intelligent SysTems and Applications (INISTA). IEEE,
2015. p. 1-7.

* KEIDAR, Matan; KAMINKA, Gal A. Ecient frontier detection for robot
exploration. The International Journal of Robotics Research, 2014, 33.2:
215-236.


