Motion planning: sampling-based planners II

Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
\checkmark Robots of arbitrary shapes

- Robot shape is considered in collision detection
- Collision detection is used as a "black-box"
- Single-body or multi-body robots are allowed
\checkmark Robots with many-DOFs
- Because the search is realized directly in \mathcal{C}-space
- Dimension of \mathcal{C} is determined by the DOFs
\checkmark Kinematic, dynamic and task constraints can be considered
- It depends on the employed local planner

\checkmark Robots of arbitrary shapes
- Robot shape is considered in collision detection
- Collision detection is used as a "black-box"
- Single-body or multi-body robots are allowed
\checkmark Robots with many-DOFs
- Because the search is realized directly in \mathcal{C}-space
- Dimension of \mathcal{C} is determined by the DOFs
\checkmark Kinematic, dynamic and task constraints can be considered
- It depends on the employed local planner

Considering differential constraints

- Let assume the transition equation

$$
\dot{x}=f(x, u)
$$

where $x \in \mathcal{X}$ is a state vector and $u \in \mathcal{U}$ is an action
 vector from action space \mathcal{U}

- \mathcal{X} is a state space, which may be $\mathcal{X}=\mathcal{C}$ or a phase space
- Phase space is derived from \mathcal{C} if dynamics is considered
- Similarly to \mathcal{C}, \mathcal{X} has $\mathcal{X}_{\text {free }}$ and $\mathcal{X}_{\text {obs }}$
- $f(x, u)$ is also called forward motion model
- Let $\tilde{u}:[0, \infty] \rightarrow \mathcal{U}$ is the action trajectory
- Action at time t is $\tilde{u}(t) \in \mathcal{U}$
- State trajectory is derived form $\tilde{u}(t)$ as

$$
x(t)=x(0)+\int_{0}^{t} f\left(x\left(t^{\prime}\right), \tilde{u}\left(t^{\prime}\right)\right) \mathrm{d} t^{\prime}
$$

where $x(0)$ is the initial state at $t=0$

- Assume we have: world \mathcal{W}, robot \mathcal{A}, configuration space \mathcal{C}, state-space \mathcal{X} and action space \mathcal{U}, start and goal states $x_{\text {init }}, X_{\text {goal }} \in \mathcal{X}_{\text {free }}$
- A system specified by $\dot{x}=f(x, u)$

Motion planning under differnetial constraints:

- The task is to compute the action trajectory $\tilde{u}:[0, \infty] \rightarrow \mathcal{U}$ such that:
- $x(0)=x_{\text {init }}$,
- $x(t)=x_{\text {goal }}$ for some $t>0$,
- $x(t) \in \mathcal{X}_{\text {free }}, x(t)$ is given by

$$
x(t)=x(0)+\int_{0}^{t} f\left(x\left(t^{\prime}\right), \tilde{u}\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right.
$$

Types of differential constraints

- Kinematics, usually given by motion model $\dot{x}=f(x, u)$
- Dynamics, e.g. $\left|\dot{x}_{6}\right|<x_{6, \max }$ (e.g. to limit speed/acceleration)
- Task constraints, e.g. $\pi-\epsilon \leq x_{\text {eff }} \leq \pi+\epsilon$, where $x_{\text {eff }}$ is the rotation of robotic arm effector

Example: robot measures an object using a sensor

- How end-effector moves depending on $\varphi_{1}, \varphi_{2}, \varphi_{3}$ (transformation matrices) \rightarrow kinematics constraints
- The sensor cannot move faster than v_{y} - dynamic constraint
- The sensor must be at distance d from the object — task constraint
- Differential drive: control inputs are speeds of left/right wheel (u_{l} and u_{r})

$$
\begin{aligned}
\dot{x} & =\frac{r}{2}\left(u_{l}+u_{r}\right) \cos \varphi \\
\dot{y} & =\frac{r}{2}\left(u_{l}+u_{r}\right) \sin \varphi \\
\dot{\varphi} & =\frac{r}{L}\left(u_{r}-u_{l}\right)
\end{aligned}
$$

- Car-like: control inputs are forward velocity u_{s} and steering angle u_{ϕ}

$$
\begin{aligned}
\dot{x} & =u_{s} \cos \varphi \\
\dot{y} & =u_{s} \sin \varphi \\
\dot{\varphi} & =\frac{u_{s}}{L} \tan u_{\phi}
\end{aligned}
$$

FACULTY

- Similar to basic RRT
- Expansion of the tree using the motion model and discretized input set \mathcal{U}

1 initialize tree \mathcal{T} with $x_{\text {init }}$
2 for $i=1, \ldots, I_{\max }$ do
$x_{\text {rand }}=$ generate randomly in \mathcal{X}
$x_{\text {near }}=$ find nearest node in \mathcal{T} towards $x_{\text {rand }}$ best $=\infty$
$x_{\text {new }}=\emptyset$
foreach $u \in \mathcal{U}$ do
$x=$ integrate $f(x, u)$ from $x_{\text {near }}$ over time Δt
if x is feasible and x is collision-free and
$\varrho\left(x, x_{\text {rand }}\right)<$ best then
$x_{\text {new }}=x$
best $=\varrho\left(x, x_{\text {rand }}\right)$
if $x_{\text {new }} \neq \emptyset$ then
\mathcal{T}.addNode $\left(x_{\text {new }}\right)$
\mathcal{T}.addEdge $\left(x_{\text {near }}, x_{\text {new }}\right)$
if $\varrho\left(x_{\text {new }}, x_{\text {goal }}\right)<d_{\text {goal }}$ then

L return path from $x_{\text {init }}$ to $x_{\text {goal }}$

RRT: example with a "wheelchair" model

Car-like, forward only

Car-like forward+backward motion

Enabling/disabling backward motion of car-like

- Either by assuming $u_{s} \geq 0$ (for forward motion only)
- Or explicit validation of results from local planner line 9: if x is feasible

Example of RRT under diff. constraints

- We have a car-like robot with broken steering mechanisms
- The robot can go either forward-only, or forward-and-left only
- Since robot is 2D and translation+rotation is required: \mathcal{C} is 3D
- State space: $\mathcal{X}=\mathcal{C}$

$$
\begin{gathered}
\dot{x}=u_{s} \cos \varphi \quad \dot{y}=u_{s} \sin \varphi \quad \dot{\varphi}=\frac{u_{s}}{L} \tan u_{\phi} \\
\dot{\varphi} \geq 0
\end{gathered}
$$

Practical implementation

- Determine action variables:

$$
\begin{aligned}
u_{s, \min } & \leq u_{s} \leq u_{s, \max } \\
u_{\phi, \min } & \leq u_{\phi} \leq u_{\phi, \max }
\end{aligned}
$$

- Discretize each range, e.g. to m values $\rightarrow m^{2}$ combinations of $u_{s} \times u_{\phi}$
- For example: $\mathcal{U}=\{(-1,-1),(-1,0),(-1,1),(0,-1),(0,1), \ldots,(1,1)\}$
- Apply all $u \in \mathcal{U}$ during tree expansion, cut off infeasible states

Example of RRT under diff. constraints

- We have a car-like robot with broken steering mechanisms
- The robot can go either forward-only, or forward-and-left only
- Since robot is 2D and translation+rotation is required: \mathcal{C} is 3D
- State space: $\mathcal{X}=\mathcal{C}$

$$
\dot{x}=u_{s} \cos \varphi \quad \dot{y}=u_{s} \sin \varphi \quad \dot{\varphi}=\frac{u_{s}}{L} \tan u_{\phi}
$$

$$
\dot{\varphi} \geq 0
$$

Motion planning of robotic manipulators

- $q=\left(\varphi_{1}, \ldots, \varphi_{n}\right), n$ joints
- $x=$ position of the link/end-effector
- x can contain also rotation if needed
- Forward kinematics: $x=F K(q)$
- Inverse kinematics: $q=I K(x)$
- IK can have singularities!

Collision detection

- Collision detection needs joint coordinates
- We need $\mathcal{A}_{i}(q)$ (position of link i at q)
- Collision detection is between $\mathcal{A}_{i}(q)$ and \mathcal{O}
- Collision detection for end-effector pose x :
- Compute $q=\operatorname{IK}(x)$
- Derive $A_{i}(q)$

Motion planning of robotic manipulators

Spaces:

- Workspace / Cartesian space / Operation space
- We construct path for the end-effector \rightarrow in \mathcal{W} !
- Joint coordinates are obtained via IK
- Collision detection is checked at the joint coordinates
- Potential problem?
- Joint-space
- The path is constructed in joint-space (!), i.e. in \mathcal{C}
- Collisions are checked using the joint coordinates
- No IK involved

Planning via inverse kinematics

- We plan path of end-effector in workspace
- Naïve usage of RRT for manipulators
- Sampling, tree growth, nearest-neighbor s. in \mathcal{W}
- $x_{\text {rand }}$ is generated randomly from \mathcal{W}
$\rightarrow x_{\mathrm{rand}}$ is the position of end-effector!
- $x_{\text {near }}$ nearest in tree towards $x_{\text {rand }}$
- Make straigh-line from $x_{\text {near }}$ to $x_{\text {rand }}$ with resolution ε

$$
x=(x, y) \in \mathcal{W}
$$

- For each waypoint x on the line:
- $q=I K(x)$, check collisions at q
x Problem with singularities
- line from $x_{\text {near }}$ to $x_{\text {rand }}$ may contain singularity
- it may result in unwanted reconfiguration
x Requires (fast) inverse kinematics
x Task/dynamic constraints difficult to evaluate

tree is in \mathcal{W}

FACULTY

RRT for manipulators II

Planning via forward kinematics

- We plan path in joint-space (=C)
- Sampling, tree growth and nearest-neighbor s. in \mathcal{C}
- Assume that joint i can change by $\pm \Delta_{i}$
- \mathcal{U} is set of possible changes of the joints, e.g.:

$$
\mathcal{U}=\left\{\left(-\Delta_{1}, 0\right),\left(\Delta_{1}, 0\right),\left(0,-\Delta_{2}\right),\left(0, \Delta_{2}\right), \ldots\right\}
$$

- $q_{\text {rand }}$ is generated randomly in \mathcal{C}
- $q_{\text {near }}$ is its nearest neighbor in \mathcal{T}
- Tree expansion: for each $u \in \mathcal{U}$:
- Apply u to $q_{\text {near }}: q^{\prime}=q_{\text {near }}+u$
- Check collision of $A_{i}\left(q^{\prime}\right)$
- add to tree such q^{\prime} that is collision-free and minimizes distance to $q_{\text {rand }}$
x Goal state needs to be defined in \mathcal{C} !
\checkmark No issues with singularities
\checkmark Task/dynamics constraints can be easily checked

$$
\begin{gathered}
u=\left(0,-\Delta_{2}\right), \\
q^{\prime}=\left(\varphi_{1}+0, \varphi_{2}-\Delta_{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
q=\left(\varphi_{1}, \varphi_{2}\right) \in C \\
\text { tree is in } \mathcal{C}
\end{gathered}
$$

$q=$ ت゙8 OF ELECTRICAL cTu in pracue ©
 Wha ENGINEERING
 (1)
-

- No task-space bias
 N

RRT for manipulators III

Planning with the task-space bias

- Combination of the two previous approaches
- Sampling in \mathcal{W} (task-space), tree growth in \mathcal{C} (joint space)
- Each node in the tree is $(q, x), q \in \mathcal{C}, x \in \mathcal{W}$
- q-part is used for the tree expansion
- x-part is used for the nearest-neighbor search
- $x_{\text {rand }}$ is generated randomly from \mathcal{W},
- $x_{\text {near }}$ is nearest node from \mathcal{T} towards $x_{\text {rand }}$ measured in \mathcal{W}
- Get joint angles: $q_{\text {rand }}=\operatorname{IK}\left(x_{\text {rand }}\right)$ and $q_{\text {near }}=\operatorname{IK}\left(x_{\text {near }}\right)$
- $q_{\text {new }}=$ straight-line expansion from $q_{\text {near }}$ to $q_{\text {rand }}$ (in \mathcal{C})

$$
\begin{gathered}
q=\left(\varphi_{1}, \varphi_{2}\right) \\
\mathcal{C} \text { is } 2 \mathrm{D}
\end{gathered}
$$

- add $q_{\text {new }}$ and $F K\left(q_{\text {new }}\right)$ to the tree if it's collision-free
\checkmark Advantages: no problem with singularities, can handle task/dynamic constraints, the goal can be specified only in task space

－Task－pace bias
 －Ta

RRT for manipulators: constraints

MRS
$\left\{\begin{array}{l}\text { MuLti-ROB } \\ \text { SYSTMS } \\ \text { GROUP }\end{array}\right.$

$\int_{\substack{\text { Sis } \\ \text { GRO }}}$

Local planner: Dubins curves

- Let's assume a simplified Car-like car moving by a constant forward speed $u_{s}=1$:

$$
\begin{aligned}
\dot{x} & =\cos \varphi \\
\dot{y} & =\sin \varphi \\
\dot{\varphi} & =u
\end{aligned}
$$

- control input (turning): $\boldsymbol{u}=\left[-\tan \phi_{\max }, \tan \phi_{\max }\right]$
- Assume a RRT planner
- How to connect $q_{\text {near }}$ to $q_{\text {rand }}$
- Naïve approach

- try several u
- use such u that minimizes distance to $q_{\text {rand }}$
- Or use Dubins vehicle!
- L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal position and tangents, American Journal of Mathematics, 79 (3): 497-516, 1957.

Local planner: Dubins curves

- Let's assume a simplified Car-like car moving by a constant forward speed $u_{s}=1$:

$$
\begin{aligned}
\dot{x} & =\cos \varphi \\
\dot{y} & =\sin \varphi \\
\dot{\varphi} & =u
\end{aligned}
$$

- control input (turning): $u=\left[-\tan \phi_{\max }, \tan \phi_{\max }\right]$

Dubins curves

- Six optimal Dubins curves: LRL, RLR, LSL, LSR, RSL, RSR; S-straight, L-left, R-right

- Any two configurations can be optimally connected by these curves
- Useful as optimal "local-planner"
- L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal position and tangents, American Journal of Mathematics, 79 (3): 497-516, 1957.

Which planner is the best?

- Many planners, many modifications, many parameters
- No free lunch theorem!
- Selection of planner/parameters depends on the instance
- We cannot rely on literature/web
- Time complexity analysis does not always help
- We have to measure performance by ourself

Typical indicators:

- Path quality (length, time-to-travel, smoothness)
- Runtime \& memory requirements
- Randomized planners: all above (statistically) + success rate curve

Good practice

- Testing setup should be as similar as possible to real situation
- Don't trust the test routine!, verify it first!!
- k is the number of collision detection queries
- $m_{\mathcal{A}}$ and $m_{\mathcal{W}}$ is the number of geometric objects describing

```
initialize tree }\mathcal{T}\mathrm{ with q}\mp@subsup{q}{\mathrm{ init}}{
2 for }i=1,\ldots,\mp@subsup{I}{\mathrm{ max }}{}\mathrm{ do
        qrand
        qnear = nearest node in }\mathcal{T}\mathrm{ towards
                qrand
        qnew = localPlanner quear }->\mp@subsup{q}{\mathrm{ rand}}{
        if canConnect(qnear, q}\mp@subsup{q}{\mathrm{ new }}{})\mathrm{ then
            T}.\mathrm{ .addNode( }\mp@subsup{q}{\mathrm{ new }}{}
            T .addEdge( }\mp@subsup{q}{\mathrm{ near }}{},\mp@subsup{q}{\mathrm{ new }}{}
            if }\varrho(\mp@subsup{q}{\mathrm{ new }}{},\mp@subsup{q}{\mathrm{ goal }}{})<\mp@subsup{d}{\mathrm{ goal }}{}\mathrm{ then
                return path from q}\mp@subsup{q}{\mathrm{ init }}{\mathrm{ to}
                    qgoal
```

- $C D$ is the complexity of collision detection

- Time complexity of one iteration of RRT with n nodes

$$
\mathcal{O} \text { (nearest_neighbor + collision_detection) }
$$

- Assuming KD-tree for nearest-neighbor and hierarchical collision detection:

$$
\mathcal{O}\left(\log n+k \log \left(m_{\mathcal{A}}+m_{\mathcal{W}}\right)\right)
$$

- General approach, valid for all methods
- Cumulative distribution function $F(x)$
- x is usually number of iterations (or runtime)
\rightarrow probability that a plan is found in less than x iterations (or in time $<x$)

- For randomized planners only
- Valid only for the tested scenario
- Cumulative distribution function $F(x)$
- x is usually number of iterations (or runtime)
\rightarrow probability that a plan is found in less than x iterations (or in time $<x$)

- For randomized planners only
- Valid only for the tested scenario

Comparison of algorithms

We have two algorithms to use. How do we select better one?

Theorist

- We decide using complexity analysis $\mathcal{O}() \ldots$

Engineer

- We measure average runtime, memory, ..., and see Expert and student of ARO
- Not easy question, we need to consider:
- What is the main criteria?
- Range of scenarios/instances to be (typically) solved
- Computational constraints (runtime limits, memory limits, ...)
- Robustness, implementation, dependencies

Basic RRT

1 initialize tree \mathcal{T} with $q_{\text {init }}$
2 for $i=1, \ldots, I_{\max }$ do
$q_{\text {rand }}=$ generate randomly in \mathcal{C}

$$
q_{\text {near }}=\text { nearest node in } \mathcal{T}
$$ towards $q_{\text {rand }}$

$q_{\text {new }}=$ localPlanner $q_{\text {near }} \rightarrow q_{\text {rand }}$
if canConnect $\left(q_{\text {near }}, q_{\text {new }}\right)$ then
\mathcal{T}.addNode $\left(q_{\text {new }}\right)$
\mathcal{T}.addEdge $\left(q_{\text {near }}, q_{\text {new }}\right)$ if $\varrho\left(q_{\text {new }}, q_{\text {goal }}\right)<d_{\text {goal }}$ then return path from $q_{\text {init }}$ to $q_{\text {goal }}$

Magic RRT

initialize tree \mathcal{T} with $q_{\text {init }}$
for $i=1, \ldots, I_{\text {max }}$ do
$q_{\text {rand }}=$ generate randomly in \mathcal{C} if $i<3$ then
$q_{\text {rand }}=q_{\text {goal }}$
$q_{\text {near }}=$ nearest node in \mathcal{T} towards $q_{\text {rand }}$
$q_{\text {new }}=$ localPlanner $q_{\text {near }} \rightarrow q_{\text {rand }}$ if canConnect $\left(q_{\text {near }}, q_{\text {new }}\right)$ then
\mathcal{T}.addNode $\left(q_{\text {new }}\right)$
\mathcal{T}.addEdge $\left(q_{\text {near }}, q_{\text {new }}\right)$
if $\varrho\left(q_{\text {new }}, q_{\text {goal }}\right)<d_{\text {goal }}$ then return path from $q_{\text {init }}$ to $q_{\text {goal }}$

Basic RRT

initialize tree \mathcal{T} with $q_{\text {init }}$
for $i=1, \ldots, I_{\text {max }}$ do
$q_{\text {rand }}=$ generate randomly in \mathcal{C}
$q_{\text {near }}=$ nearest node in \mathcal{T} towards $q_{\text {rand }}$
$q_{\text {new }}=$ localPlanner $q_{\text {near }} \rightarrow q_{\text {rand }}$
if canConnect $\left(q_{\text {near }}, q_{\text {new }}\right)$ then
\mathcal{T}.addNode $\left(q_{\text {new }}\right)$
\mathcal{T}.addEdge $\left(q_{\text {near }}, q_{\text {new }}\right)$ if $\varrho\left(q_{\text {new }}, q_{\text {goal }}\right)<d_{\text {goal }}$ then
return path from $q_{\text {init }}$ to
q_{goal}

Magic RRT

```
initialize tree \(\mathcal{T}\) with \(q_{\text {init }}\)
for \(i=1, \ldots, I_{\text {max }}\) do
            \(q_{\text {rand }}=\) generate randomly in \(\mathcal{C}\)
            if \(i<3\) then
                \(q_{\text {rand }}=q_{\text {goal }}\)
            \(q_{\text {near }}=\) nearest node in \(\mathcal{T}\) towards
            \(q_{\text {rand }}\)
            \(q_{\text {new }}=\) localPlanner \(q_{\text {near }} \rightarrow q_{\text {rand }}\)
            if canConnect \(\left(q_{\text {near }}, q_{\text {new }}\right)\) then
                    \(\mathcal{T}\).addNode \(\left(q_{\text {new }}\right)\)
            \(\mathcal{T}\).addEdge \(\left(q_{\text {near }}, q_{\text {new }}\right)\)
            if \(\varrho\left(q_{\text {new }}, q_{\text {goal }}\right)<d_{\text {goal }}\) then
                return path from \(q_{\text {init }}\) to
                                    \(q_{\text {goal }}\)
    \(\mathcal{O}\left(\log n+k \log \left(m_{\mathcal{A}}+m_{\mathcal{W}}\right)\right)\)
```

- Both methods have the same time complexity
- ... but do they behave same?

RRT vs Magic RRT: sample results

RRT, 8 trials

Magic RRT, 8 trials

- What is obvious difference between these two methods?

RRT vs Magic RRT: cum. probability

- Can you explain why Magic RRT is better?
- Is it true for all scenarios?
- Can you design a scenario where RRT will be better than Magic RRT?

RRT vs Magic RRT: cum. probability

 CTU IN PRAGUE - GROUP

- In our scenario, RRT is worse than Magic RRT
- Above is true only for parameters used in the comparison!
- There are other scenarios with opposite behavior
- There are other scenarios where RRT is same (statistically) as Magic RRT
- Other parameters of RRT/Magic RRT, may lead to different results

- How does RRT perform if $q_{\text {rand }}$ are generated only from $\mathcal{C}_{\text {free }}$ instead of \mathcal{C} ?

Basic RRT

initialize tree \mathcal{T} with $q_{\text {init }}$
for $i=1, \ldots, I_{\text {max }}$ do
$q_{\text {rand }}=$ generate randomly in \mathcal{C}
$q_{\text {near }}=$ nearest node in \mathcal{T} towards $q_{\text {rand }}$
$q_{\text {new }}=$ localPlanner $q_{\text {near }} \rightarrow q_{\text {rand }}$ if canConnect $\left(q_{\text {near }}, q_{\text {new }}\right)$ then \mathcal{T}.addNode $\left(q_{\text {new }}\right)$ \mathcal{T}.addEdge $\left(q_{\text {near }}, q_{\text {new }}\right)$ if $\varrho\left(q_{\text {new }}, q_{\text {goal }}\right)<d_{\text {goal }}$ then return path from $q_{\text {init }}$ to $q_{\text {goal }}$

RRT with $q_{\text {rand }} \in \mathcal{C}_{\text {free }}$
1 initialize tree \mathcal{T} with $q_{\text {init }}$
2 for $i=1, \ldots, I_{\text {max }}$ do
$q_{\text {rand }}=$ generate randomly in \mathcal{C}
if $q_{\text {rand }} \notin \mathcal{C}_{\text {free }}$ then
continue
$q_{\text {near }}=$ nearest node in \mathcal{T} towards $q_{\text {rand }}$
$q_{\text {new }}=$ localPlanner $q_{\text {near }} \rightarrow q_{\text {rand }}$ if canConnect $\left(q_{\text {near }}, q_{\text {new }}\right)$ then
\mathcal{T}.addNode $\left(q_{\text {new }}\right)$
\mathcal{T}.addEdge $\left(q_{\text {near }}, q_{\text {new }}\right)$
if $\varrho\left(q_{\text {new }}, q_{\text {goal }}\right)<d_{\text {goal }}$ then return path from $q_{\text {init }}$ to $q_{\text {goal }}$

- Analyze how this can happen in empty/cluttered/narrow spaces?
- How does it changes complexity of the method?

Sampling with $q_{\text {rand }} \in \mathcal{C}_{\text {free }}:$ results

Sampling with $q_{\text {rand }} \in \mathcal{C}_{\text {free }}:$ results

