### Motion planning: sampling-based planners II

#### Vojtěch Vonásek

Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague



- Robots of arbitrary shapes
  - · Robot shape is considered in collision detection
  - Collision detection is used as a "black-box"
  - Single-body or multi-body robots are allowed
- Robots with many-DOFs
  - Because the search is realized directly in  $\mathcal{C}\text{-space}$
  - Dimension of  $\ensuremath{\mathcal{C}}$  is determined by the DOFs
- ✓ Kinematic, dynamic and task constraints can be considered
  - It depends on the employed local planner





- Robots of arbitrary shapes
  - Robot shape is considered in collision detection
  - Collision detection is used as a "black-box"
  - Single-body or multi-body robots are allowed
- Robots with many-DOFs
  - Because the search is realized directly in  $\mathcal{C}\text{-space}$
  - Dimension of  $\ensuremath{\mathcal{C}}$  is determined by the DOFs
- ✓ Kinematic, dynamic and task constraints can be considered
  - It depends on the employed local planner



### Considering differential constraints

• Let assume the transition equation

$$\dot{x} = f(x, u)$$



where  $x \in \mathcal{X}$  is a state vector and  $u \in \mathcal{U}$  is an action vector from action space  $\mathcal{U}$ 

- $\mathcal{X}$  is a state space, which may be  $\mathcal{X} = \mathcal{C}$  or a phase space
  - Phase space is derived from C if dynamics is considered
  - Similarly to C, X has X<sub>free</sub> and X<sub>obs</sub>
- *f*(*x*, *u*) is also called **forward motion model**
- Let  $\tilde{u}: [0,\infty] \to \mathcal{U}$  is the action trajectory
- Action at time *t* is  $\tilde{u}(t) \in U$
- State trajectory is derived form  $\tilde{u}(t)$  as

$$x(t) = x(0) + \int_0^t f(x(t'), \tilde{u}(t')) \mathrm{d}t'$$

where x(0) is the initial state at t = 0

### Planning under differential constraints



- Assume we have: world  $\mathcal{W}$ , robot  $\mathcal{A}$ , configuration space  $\mathcal{C}$ , state-space  $\mathcal{X}$  and action space  $\mathcal{U}$ , start and goal states  $x_{\text{init}}, x_{\text{goal}} \in \mathcal{X}_{\text{free}}$
- A system specified by  $\dot{x} = f(x, u)$

#### Motion planning under differnetial constraints:

- The task is to compute the action trajectory  $\tilde{u} : [0, \infty] \to \mathcal{U}$  such that:
- $x(0) = x_{init}$ ,
- *x*(*t*) = *x*<sub>goal</sub> for some *t* > 0,
- $x(t) \in \mathcal{X}_{\text{free}}, x(t)$  is given by

$$x(t) = x(0) + \int_0^t f(x(t'), \tilde{u}(t'))dt'$$

# Planning under differential constraints



#### Types of differential constraints

- Kinematics, usually given by motion model  $\dot{x} = f(x, u)$
- Dynamics, e.g.  $|\dot{x}_6| < x_{6,max}$  (e.g. to limit speed/acceleration)
- Task constraints, e.g. π − ε ≤ x<sub>eff</sub> ≤ π + ε, where x<sub>eff</sub> is the rotation of robotic arm effector

Example: robot measures an object using a sensor



- How end-effector moves depending on φ<sub>1</sub>, φ<sub>2</sub>, φ<sub>3</sub> (transformation matrices) → kinematics constraints
- The sensor cannot move faster than vy dynamic constraint
- The sensor must be at distance *d* from the object task constraint

# Basic kinematic motion models

FACULTY OF ELECTRICAL ENGINEERING ENGINEERING CTU IN PRAGUE

 Differential drive: control inputs are speeds of left/right wheel (u<sub>l</sub> and u<sub>r</sub>)

$$\dot{x} = \frac{r}{2}(u_l + u_r)\cos\varphi \dot{y} = \frac{r}{2}(u_l + u_r)\sin\varphi \dot{\varphi} = \frac{r}{L}(u_r - u_l)$$

 Car-like: control inputs are forward velocity u<sub>s</sub> and steering angle u<sub>φ</sub>

$$\begin{aligned} \dot{x} &= & u_s \cos \varphi \\ \dot{y} &= & u_s \sin \varphi \\ \dot{\varphi} &= & \frac{u_s}{L} \tan u_\phi \end{aligned}$$



Car-like

# RRT for planning under diff. constr

ACULTY OF ELECTRICAL ENGINEERING CTU IN PRAGUE MULTI-ROBOT SYSTEMS GROUP

- Similar to basic RRT
- Expansion of the tree using the motion model and discretized input set  $\mathcal{U}$

```
initialize tree \mathcal{T} with x_{init}
    for i = 1, ..., I_{max} do
            x_{\text{rand}} = generate randomly in \mathcal{X}
 3
            x_{\text{near}} = find nearest node in \mathcal{T} towards x_{\text{rand}}
            best = \infty
 5
            X_{\text{new}} = \emptyset
 6
            foreach u \in \mathcal{U} do
 7
                    x = integrate f(x, u) from x_{near} over time \Delta t
 8
                    if x is feasible and x is collision-free and
 9
                      \varrho(x, x_{\text{rand}}) < best then
10
                            X_{\text{new}} = X
                            best = \varrho(x, x_{rand})
11
            if x_{new} \neq \emptyset then
12
                    \mathcal{T}.addNode(x_{new})
13
                    \mathcal{T}.addEdge(x_{\text{near}}, x_{\text{new}})
14
                    if \rho(x_{\text{new}}, x_{\text{goal}}) < d_{\text{goal}} then
15
                            return path from x_{init} to x_{goal}
16
```











### RRT: example with the car-like robot





Enabling/disabling backward motion of car-like

- Either by assuming  $u_s \ge 0$  (for forward motion only)
- Or explicit validation of results from local planner

line 9: if x is feasible

# Example of RRT under diff. constraints

- We have a car-like robot with broken steering mechanisms
- The robot can go either forward-only, or forward-and-left only
- Since robot is 2D and translation+rotation is required: C is 3D
- State space:  $\mathcal{X} = \mathcal{C}$

$$\begin{aligned} \dot{x} &= u_s \cos \varphi \quad \dot{y} &= u_s \sin \varphi \quad \dot{\varphi} &= \frac{u_s}{L} \tan u_\phi \\ \dot{\varphi} &\geq 0 \end{aligned}$$

#### **Practical implementation**

• Determine action variables:

$$u_{s,min} \le u_s \le u_{s,max}$$
  
 $u_{\phi,min} \le u_{\phi} \le u_{\phi,max}$ 

- Discretize each range, e.g. to *m* values  $ightarrow m^2$  combinations of  $u_s imes u_\phi$
- For example:  $\mathcal{U} = \{(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), \dots, (1, 1)\}$
- Apply all  $u \in \mathcal{U}$  during tree expansion, cut off infeasible states





# Example of RRT under diff. constraints

- · We have a car-like robot with broken steering mechanisms
- The robot can go either forward-only, or forward-and-left only
- Since robot is 2D and translation+rotation is required:  ${\mathcal C}$  is 3D
- State space: X = C

$$\dot{x} = u_s \cos arphi \quad \dot{y} = u_s \sin arphi \quad \dot{arphi} = rac{u_s}{L} ext{tan} \ u_{\phi}$$









# Motion planning of robotic manipulators

- $q = (\varphi_1, \ldots, \varphi_n), n \text{ joints}$
- x = position of the link/end-effector
- x can contain also rotation if needed
- Forward kinematics: x = FK(q)
- Inverse kinematics: q = IK(x)
- IK can have singularities!

#### **Collision detection**

- Collision detection needs joint coordinates
- We need A<sub>i</sub>(q) (position of link i at q)
- Collision detection is between  $\mathcal{A}_i(q)$  and  $\mathcal{O}$
- Collision detection for end-effector pose *x*:
  - Compute q = IK(x)
  - Derive  $A_i(q)$



Two arms links  $\mathcal{A}_1$  and  $\mathcal{A}_2$ 



#### Spaces:

- Workspace / Cartesian space / Operation space
  - We construct path for the end-effector  $\rightarrow$  in  $\mathcal{W}$  !
  - Joint coordinates are obtained via IK
  - Collision detection is checked at the joint coordinates
  - Potential problem?
- Joint-space
  - The path is constructed in joint-space (!), i.e. in  $\mathcal C$
  - Collisions are checked using the joint coordinates
  - No IK involved





www.youtube.com/watch?v=BJnZvwAE0PY

## RRT for manipulators I

### Planning via inverse kinematics

- We plan path of end-effector in workspace
- Naïve usage of RRT for manipulators
- Sampling, tree growth, nearest-neighbor s. in  $\ensuremath{\mathcal{W}}$
- $x_{\text{rand}}$  is generated randomly from  $\mathcal{W}$
- $\rightarrow x_{\text{rand}}$  is the position of end-effector!
  - x<sub>near</sub> nearest in tree towards x<sub>rand</sub>
  - Make straigh-line from  $x_{\text{near}}$  to  $x_{\text{rand}}$  with resolution  $\varepsilon$
  - For each waypoint x on the line:
    - q = IK(x), check collisions at q
  - × Problem with singularities
    - line from x<sub>near</sub> to x<sub>rand</sub> may contain singularity
    - it may result in unwanted reconfiguration
  - X Requires (fast) inverse kinematics
  - X Task/dynamic constraints difficult to evaluate





tree is in  $\ensuremath{\mathcal{W}}$ 



# RRT for manipulators II

#### ACULTY OF ELECTRICAL ENGINEERING CTU IN PRAGUE

#### Planning via forward kinematics

- We plan path in joint-space (=*C*)
- Sampling, tree growth and nearest-neighbor s. in  $\ensuremath{\mathcal{C}}$
- Assume that joint *i* can change by  $\pm \Delta_i$
- U is set of possible changes of the joints, e.g.:

 $\mathcal{U}=\{(-\Delta_1,0),(\Delta_1,0),(0,-\Delta_2),(0,\Delta_2),\ldots\}$ 

- $q_{\rm rand}$  is generated randomly in  ${\cal C}$
- $q_{
  m near}$  is its nearest neighbor in  ${\cal T}$
- Tree expansion: for each  $u \in \mathcal{U}$ :
  - Apply *u* to  $q_{\text{near}}$ :  $q' = q_{\text{near}} + u$
  - Check collision of A<sub>i</sub>(q')
  - add to tree such q' that is collision-free and minimizes distance to q<sub>rand</sub>
- ✗ Goal state needs to be defined in C!
- No issues with singularities
- Task/dynamics constraints can be easily checked



 $u = (0, -\Delta_2),$  $q' = (\varphi_1 + 0, \varphi_2 - \Delta_2)$ 

х

# RRT for manipulators: examples





# RRT for manipulators: examples







• No task-space bias



# **RRT** for manipulators III

#### Planning with the task-space bias

- Combination of the two previous approaches
- Sampling in  ${\mathcal W}$  (task-space), tree growth in  ${\mathcal C}$  (joint space)
- Each node in the tree is  $(q, x), q \in C, x \in W$ 
  - q-part is used for the tree expansion
  - *x*-part is used for the nearest-neighbor search
- $x_{\text{rand}}$  is generated randomly from W,
- $x_{\text{near}}$  is nearest node from  $\mathcal{T}$  towards  $x_{\text{rand}}$  measured in  $\mathcal{W}$
- Get joint angles:  $q_{rand} = IK(x_{rand})$  and  $q_{near} = IK(x_{near})$
- $q_{\text{new}}$  = straight-line expansion from  $q_{\text{near}}$  to  $q_{\text{rand}}$  (in C)
- add  $q_{\text{new}}$  and  $FK(q_{\text{new}})$  to the tree if it's collision-free
- Advantages: no problem with singularities, can handle task/dynamic constraints, the goal can be specified only in task space









Task-pace bias







# RRT for manipulators: constraints





# RRT for manipulators: constraints





# Local planner: Dubins curves

• Let's assume a simplified Car-like car moving by a constant forward speed  $u_s = 1$ :

$$\dot{x} = \cos \varphi$$
  
 $\dot{y} = \sin \varphi$   
 $\dot{\varphi} = u$ 

- control input (turning):  $u = [-\tan \phi_{\max}, \tan \phi_{\max}]$
- Assume a RRT planner
- How to connect  $q_{\text{near}}$  to  $q_{\text{rand}}$
- Naïve approach
  - try several u
  - use such u that minimizes distance to q<sub>rand</sub>
- Or use Dubins vehicle!

 L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal position and tangents, American Journal of Mathematics, 79 (3): 497–516, 1957.







# Local planner: Dubins curves

• Let's assume a simplified Car-like car moving by a constant forward speed  $u_s = 1$ :

$$\begin{aligned} \dot{x} &= \cos \varphi \\ \dot{y} &= \sin \varphi \\ \dot{\varphi} &= u \end{aligned}$$

• control input (turning):  $u = [-\tan \phi_{\max}, \tan \phi_{\max}]$ 

#### **Dubins curves**

- Six optimal Dubins curves: LRL, RLR, LSL, LSR, RSL, RSR; S-straight, L-left, R-right
- Any two configurations can be optimally connected by these curves
- Useful as optimal "local-planner"

 L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal position and tangents, American Journal of Mathematics, 79 (3): 497–516, 1957.









#### Which planner is the best?

- Many planners, many modifications, many parameters
- No free lunch theorem!
- · Selection of planner/parameters depends on the instance
- We cannot rely on literature/web
- Time complexity analysis does not always help
- · We have to measure performance by ourself

#### Typical indicators:

- Path quality (length, time-to-travel, smoothness)
- Runtime & memory requirements
- Randomized planners: all above (statistically) + success rate curve

#### **Good practice**

- Testing setup should be as similar as possible to real situation
- Don't trust the test routine!, verify it first!!

### Planner analysis: time complexity



- *k* is the number of collision detection queries
- *m*<sub>A</sub> and *m*<sub>W</sub> is the number of geometric objects describing A and W
- *NN* is the complexity of the nearest-neighbor search
- *CD* is the complexity of collision detection

initialize tree  $\mathcal{T}$  with  $q_{init}$ for  $i = 1, ..., I_{max}$  do 2  $q_{\rm rand}$  = generate randomly in C 3  $q_{\text{near}}$  = nearest node in  $\mathcal{T}$  towards 4 *Q*rand  $q_{\text{new}} = \text{localPlanner } q_{\text{near}} \rightarrow q_{\text{rand}}$ 5 if  $canConnect(q_{near}, q_{new})$  then 6  $\mathcal{T}$ .addNode( $q_{new}$ ) 7  $\mathcal{T}$ .addEdge( $q_{\text{near}}, q_{\text{new}}$ ) 8 if  $\rho(q_{\text{new}}, q_{\text{goal}}) < d_{aoal}$  then a return path from q<sub>init</sub> to 10 **q**<sub>goal</sub>

• Time complexity of one iteration of RRT with *n* nodes

```
O(\text{nearest\_neighbor} + \text{collision\_detection})
```

Assuming KD-tree for nearest-neighbor and hierarchical collision detection:

$$\mathcal{O}(\log n + k \log(m_A + m_W))$$

• General approach, valid for all methods

### Planner analysis: cumulative probability

ACT STATUS

- Cumulative distribution function F(x)
- x is usually number of iterations (or runtime)
- $\rightarrow$  probability that a plan is found in less than x iterations (or in time < x)



- For randomized planners only
- Valid only for the tested scenario

### Planner analysis: cumulative probability



- Cumulative distribution function F(x)
- x is usually number of iterations (or runtime)
- $\rightarrow$  probability that a plan is found in less than x iterations (or in time < x)



- For randomized planners only
- Valid only for the tested scenario

# Comparison of algorithms

We have two algorithms to use. How do we select better one?

### Theorist

• We decide using complexity analysis  $\mathcal{O}()...$ 

### Engineer

• We measure average runtime, memory, ..., and see

#### Expert and student of ARO

- Not easy question, we need to consider:
  - What is the main criteria?
  - Range of scenarios/instances to be (typically) solved
  - Computational constraints (runtime limits, memory limits, ...)
  - Robustness, implementation, dependencies





# RRT vs Magic RRT: intro



#### **Basic RRT**

| 1  | initialize tree $\mathcal{T}$ with $q_{\text{init}}$             |
|----|------------------------------------------------------------------|
| 2  | for $i = 1,, I_{max}$ do                                         |
| 3  | $q_{\rm rand}$ = generate randomly in C                          |
| 4  |                                                                  |
| 5  |                                                                  |
| 6  | $q_{\text{near}}$ = nearest node in $\mathcal{T}$                |
|    | towards <i>q</i> <sub>rand</sub>                                 |
| 7  | $q_{ m new}$ = localPlanner $q_{ m near}  ightarrow q_{ m rand}$ |
| 8  | if canConnect(q <sub>near</sub> , q <sub>new</sub> ) then        |
| 9  | $\mathcal{T}.addNode(q_{new})$                                   |
| 10 | $\mathcal{T}.addEdge(q_{\text{near}}, q_{\text{new}})$           |
| 11 | if $\varrho(q_{\text{new}}, q_{\text{goal}}) < d_{goal}$ then    |
| 12 | return path from q <sub>init</sub> to                            |
|    | $q_{ m goal}$                                                    |
|    |                                                                  |

#### Magic RRT

| 1  | initialize tree ${\cal T}$ with ${\it q}_{ m init}$               |
|----|-------------------------------------------------------------------|
| 2  | for $i = 1, \ldots, I_{max}$ do                                   |
| 3  | $q_{\rm rand}$ = generate randomly in C                           |
| 4  | if $i < 3$ then                                                   |
| 5  | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                          |
| 6  | $q_{\text{near}}$ = nearest node in $\mathcal{T}$ towards         |
|    | $q_{\rm rand}$                                                    |
| 7  | $q_{ m new}$ = localPlanner $q_{ m near}  ightarrow q_{ m rand}$  |
| 8  | if canConnect(q <sub>near</sub> , q <sub>new</sub> ) then         |
| 9  | $\mathcal{T}.addNode(q_{\mathrm{new}})$                           |
| 10 | $\mathcal{T}.addEdge(q_{\mathrm{near}}, q_{\mathrm{new}})$        |
| 11 | if $\rho(q_{\text{new}}, q_{\text{goal}}) < d_{\text{goal}}$ then |
| 12 | return path from $q_{init}$ to                                    |
|    | $q_{\rm goal}$                                                    |
|    |                                                                   |

### **RRT vs Magic RRT: intro**



#### Basic RRT

| 1  | initialize tree $\mathcal{T}$ with $q_{\text{init}}$                                |
|----|-------------------------------------------------------------------------------------|
| 2  | for $i = 1, \dots, I_{max}$ do                                                      |
| -  | , , , , , , , , , , , , , , , , , , ,                                               |
| 3  | $q_{\rm rand}$ = generate randomly in C                                             |
| 4  |                                                                                     |
| 5  |                                                                                     |
| 6  | $q_{\text{near}}$ = nearest node in $T$                                             |
|    | towards <i>q</i> <sub>rand</sub>                                                    |
| 7  | $q_{\text{new}} = \text{localPlanner } q_{\text{near}} \rightarrow q_{\text{rand}}$ |
| 8  | if canConnect(q <sub>near</sub> , q <sub>new</sub> ) then                           |
| 9  | $\mathcal{T}.addNode(q_{new})$                                                      |
| 10 | $\mathcal{T}$ .addEdge( $q_{\text{near}}, q_{\text{new}}$ )                         |
| 11 | if $\rho(q_{\text{new}}, q_{\text{goal}}) < d_{\text{goal}}$ then                   |
| 12 | return path from g <sub>init</sub> to                                               |
|    |                                                                                     |

#### Magic RRT

| 1  | initialize tree $\mathcal{T}$ with $q_{\text{init}}$             |
|----|------------------------------------------------------------------|
| 2  | for $i = 1,, I_{max}$ do                                         |
| 3  | $q_{\rm rand}$ = generate randomly in C                          |
| 4  | if $i < 3$ then                                                  |
| 5  | $q_{ m rand} = q_{ m goal}$                                      |
| 6  | $q_{\text{near}}$ = nearest node in $\mathcal{T}$ towards        |
|    | $q_{\rm rand}$                                                   |
| 7  | $q_{ m new}$ = localPlanner $q_{ m near}  ightarrow q_{ m rand}$ |
| 8  | if canConnect(q <sub>near</sub> , q <sub>new</sub> ) then        |
| 9  | $\mathcal{T}$ .addNode( $q_{new}$ )                              |
| 10 | $\mathcal{T}$ .addEdge $(q_{\text{near}}, q_{\text{new}})$       |
| 11 | if $\rho(q_{\text{new}}, q_{\text{goal}}) < d_{goal}$ then       |
| 12 | return path from g <sub>init</sub> to                            |
|    | q <sub>goal</sub>                                                |
|    |                                                                  |

 $\mathcal{O}(\log n + k \log(m_A + m_W))$ 

 $\mathcal{O}(\log n + k \log(m_A + m_W))$ 

- Both methods have the same time complexity
- ... but do they behave same?





### RRT vs Magic RRT: sample results





• What is obvious difference between these two methods?

### RRT vs Magic RRT: cum. probability





- Can you explain why Magic RRT is better?
- Is it true for all scenarios?
- Can you design a scenario where RRT will be better than Magic RRT?

### RRT vs Magic RRT: cum. probability







### RRT vs Magic RRT: conclusion

- In our scenario, RRT is worse than Magic RRT
- Above is true only for parameters used in the comparison!
- There are other scenarios with opposite behavior
- There are other scenarios where RRT is same (statistically) as Magic RRT
- Other parameters of RRT/Magic RRT, may lead to different results



# Sampling with $q_{rand} \in C_{free}$

How does RRT perform if q<sub>rand</sub> are generated only from C<sub>free</sub> instead of C?

2

3

4

7

8

#### Basic RRT

| 1  | initialize tree ${\cal T}$ with $q_{ m init}$                    | - |
|----|------------------------------------------------------------------|---|
| 2  | for $i = 1,, I_{max}$ do                                         |   |
| 3  | $q_{\rm rand}$ = generate randomly in C                          |   |
| 4  |                                                                  |   |
| 5  |                                                                  |   |
| 6  | $q_{\text{near}}$ = nearest node in $T$                          |   |
|    | towards <i>q</i> <sub>rand</sub>                                 |   |
| 7  | $q_{ m new}$ = localPlanner $q_{ m near}  ightarrow q_{ m rand}$ |   |
| 8  | if $canConnect(q_{near}, q_{new})$ then                          |   |
| 9  | $\mathcal{T}$ .addNode( $q_{\text{new}}$ )                       |   |
| 10 | $\mathcal{T}$ .addEdge( $q_{\text{near}}, q_{\text{new}}$ )      |   |
| 11 | if $\rho(q_{\text{new}}, q_{\text{goal}}) < d_{goal}$ then       |   |
| 12 | return path from $q_{\text{init}}$ to                            |   |
|    | $q_{\rm goal}$                                                   |   |
|    |                                                                  |   |
|    | <b>–</b>                                                         |   |

RRT with  $a_{rand} \in C_{free}$ initialize tree  $\mathcal{T}$  with  $q_{\text{init}}$ for  $i = 1, \ldots, I_{max}$  do  $q_{\rm rand}$  = generate randomly in C if  $q_{rand} \notin C_{free}$  then continue 5  $a_{\text{near}}$  = nearest node in  $\mathcal{T}$  towards 6  $q_{\rm rand}$  $q_{\text{new}} = \text{localPlanner } q_{\text{near}} \rightarrow q_{\text{rand}}$ if  $canConnect(q_{near}, q_{new})$  then  $\mathcal{T}$ .addNode( $q_{new}$ ) 9  $\mathcal{T}$ .addEdge( $q_{\text{near}}, q_{\text{new}}$ ) 10 if  $\rho(q_{\text{new}}, q_{\text{soal}}) < d_{\text{goal}}$  then 11 12 return path from  $q_{init}$  to  $q_{\rm goal}$ 

- Analyze how this can happen in empty/cluttered/narrow spaces?
- How does it changes complexity of the method?

# Sampling with $q_{rand} \in \mathcal{C}_{free}$ : results





# Sampling with $q_{rand} \in C_{free}$ : results



