Motion planning: sampling-based planners III basic modifications

Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

Know issus of samaling

- One may consider sampling-based planning as a "magic" tool . . . but that's not true at all!

Sampling-based planners have many issues

- Narrow passage problem
- Difficulty of sampling small region in $\mathcal{C}_{\text {free }}$ surrounded by $\mathcal{C}_{\text {obs }}$
- Problematic if (all) solutions have to pass that region
- Sensitivity to metric \& parameters
- How to measure distance in \mathcal{C} ?
- Selecting a good metric is as difficult as motion planning!
- Many methods have "too many" parameters
- Some parameters are hidden (or not well described)
- How to tune the parameters?
- Supporting functions
- Collision detection \& nearest-neighbor search
- Fast and reliable implementation

How do we recognize the issue? \rightarrow performance measurement!

Narrow passage (NP)

- A region $\mathcal{R} \subseteq \mathcal{C}_{\text {free }}$ with a small volume $\operatorname{vol}(\mathcal{R})<\operatorname{vol}(\mathcal{C})$
- Probability that a random sample falls to \mathcal{R} is $\sim \operatorname{vol}(\mathcal{R}) / \operatorname{vol}(\mathcal{C})$
- NP are problematic if their removal changes connectivity of $\mathcal{C}_{\text {free }}$
- NP are regions in $\mathcal{C} \rightarrow$ they are given implicitly
- Location/size/volume/shape of NPs is not known!

Consequences of having NP

- PRM builds unconnected roadmaps \rightarrow no solution
- RRT/EST cannot enter NP \rightarrow no solution
- Number of samples must be significantly increased
- Runtime is increased

Narrow passage \& RRT

QR MRS

- Narrow passages are in \mathcal{C}
- Sometimes, we cannot (easily) see/estimate them from workspace!
- What makes the narrow passage in the Alpha-puzzle benchmark?

How does $\mathcal{C}_{\text {obs }}$ appears?

- Can we guess shape of $\mathcal{C}_{\text {obs }}$ based on workspace?
- $\operatorname{vol}(\mathcal{A}) \ll \operatorname{vol}(\mathcal{O})$

Workspace

- $\operatorname{vol}(\mathcal{A})<\operatorname{vol}(\mathcal{O})$

Configuration space

Workspace

Configuration space

- When obstacles \mathcal{O} dominate, they mostly influence the shape of $\mathcal{C}_{\text {obs }}$

How does $\mathcal{C}_{\text {obs }}$ appear?

- Let $X, Y \subset R^{n}, X$ and Y are nonempty
- Brunn-Minkowski theorem:

$$
\operatorname{vol}(X \oplus Y) \geq\left(\operatorname{vol}(X)^{\frac{1}{n}}+\operatorname{vol}(Y)^{\frac{1}{n}}\right)^{n}
$$

- $\operatorname{vol}\left(\mathcal{C}_{\text {obs }}\right)$ is larger than $\min (\operatorname{vol}(\mathcal{A}), \operatorname{vol}(\mathcal{O}))$
- $\operatorname{vol}\left(\mathcal{C}_{\text {obs }}\right)$ can be much larger!

Example: $\operatorname{vol}(\mathcal{A})=\operatorname{vol}(\mathcal{O})$

Workspace

Configuration space

Improvements

Why improvements of PRM/RRT/EST?

- To cope with the narrow passage problem, improve path quality, speed-up planning, to enable planning in specific cases

Main tricks

```
1 initialize tree }\mathcal{T}\mathrm{ with q}\mp@subsup{q}{\mathrm{ init}}{
2 for }i=1,\ldots,Imax do
\(q_{\text {rand }}=\) generate randomly in \(\mathcal{C}\)
\(q_{\text {near }}=\) find nearest node in \(\mathcal{T}\) towards
\(q_{\text {rand }}\)
\(q_{\text {new }}=\) localPlanner from \(q_{\text {near }}\) towards
\(q_{\text {rand }}\)
if canConnect \(\left(q_{\text {near }}, q_{\text {new }}\right)\) then
\(\mathcal{T}\).addNode \(\left(q_{\text {new }}\right)\)
\(\mathcal{T}\).addEdge \(\left(q_{\text {near }}, q_{\text {new }}\right)\)
if \(\varrho\left(q_{\text {new }}, q_{\text {goal }}\right)<d_{\text {goal }}\) then
\(L\) return path from \(q_{\text {init }}\) to \(q_{\text {new }}\)
- Change distribution of random samples
- Dedicated metrics
- Improved nearest-neighbor search
- Use suitable local planners
- Improve collision-detection

\section*{Improvements}
- Many existing modifications of sampling-based planners, look at surveys
- Next slides present the basic principle of improvements
-Elbanhawi, M., \& Simic, M. (2014). Sampling-based robot motion planning: A review. IEEE access, 2, 56-77.
-Veras, Luiz Gustavo D. O., Felipe L. L. Medeiros, and Lamartine N. F. Guimaraes. Systematic Literature Review of Sampling Process in Rapidly-Exploring Random Trees. IEEE Access 7 (2019)

\section*{Observation}
- RRT tree grows towards random samples
- If we samples some region more dense, the tree is "attracted" to grow there

\section*{Goal-bias}
- Random sample \(q_{\text {rand }}\) is generated in \(\mathcal{C}\) with probability \(\left(1-p_{\text {goal }}\right)\), otherwise it is set to \(q_{\text {rand }}=q_{\text {goal }}\)
- The rest of RRT algorithm is the same
- Improves the performance if the tree can directly reach the goal
- Decreases the performance if the tree is hindered by obstacles


\section*{Observation}
- RRT tree grows towards random samples
- If we samples some region more dense, the tree is "attracted" to grow there

\section*{Goal-bias}
- Random sample \(q_{\text {rand }}\) is generated in \(\mathcal{C}\) with probability \(\left(1-p_{\text {goal }}\right)\), otherwise it is set to \(q_{\text {rand }}=q_{\text {goal }}\)
- The rest of RRT algorithm is the same
- Improves the performance if the tree can directly reach the goal
- Decreases the performance if the tree is hindered by obstacles


\section*{RRT improvement I: goal bias}
- Goal-bias may improve or even worse the performance!



\section*{Observation}
- Goal-bias attracts the tree towards \(q_{\text {goal }}\), but the tree may be blocked by obstacles
- Generalization: we can attract the tree toward any region \(\mathcal{R} \subseteq \mathcal{C}\) if we sample \(\mathcal{R}\) densely

\section*{Guided-based sampling}
- Estimate a path that can "guide" the tree in the \(\mathcal{C}\)-space
- Generate \(q_{\text {rand }}\) around the path-waypoints (starting from first waypoint) until the tree reaches the waypoint


RRT + goal-bias


Guiding path
- Then generate \(q_{\mathrm{rand}}\) around the next waypoint


Sampling at 1


Sampling at 2


Sampling at 3


Sampling at 4

\section*{Guided sampling}


\section*{Guided sampling}

\section*{How to compute the guiding path?}
- Generally, the guiding path has to be located in \(\mathcal{C}\) !!
- Finding a good guiding path has the same complexity as the original planning problem!
- (i.e., guiding sampling is 'planning solved by planning')
- Practically, we have two options

\section*{Guiding path in \(\mathcal{W}\)}
- Path is computed in workspace - geometric planning (Voronoi diagram, Visibility graph, etc.)
- Suitable for low-dimensional problems
- The remaining dimensions are sampled uniformly

\section*{Guiding path in \(\mathcal{C}\)}
- Path is computed in \(\mathcal{C}\) by a simplified search

Guiding path in \(\mathcal{W}\) \(q=(x, y, \varphi)\)
\((x, y)\) from the path
\(\varphi\) randomly


FACULTY

\section*{Computing guiding path in \(\mathcal{C}\)}

\section*{Guiding path in \(\mathcal{C}\)}
- Problem is simplified - relaxation of constraints
- For example, robot is scaled-down
- Solve simplified planning problem
- Use the solution to generate random samples along it
- The process can be iterative


\section*{Computing guiding path in \(\mathcal{C}\)}


Computing guiding path in \(\mathcal{C}\)


Computing guiding path in \(\mathcal{C}\)
|
\(\circlearrowleft\) Wha ENGINEERING


- Use two trees: \(\mathcal{T}_{i}\) rooted at \(q_{\text {init }}, \mathcal{T}_{g}\) rooted \(q_{\text {goal }}\)
- One tree expands towards \(q_{\text {rand }}\), second tree expands towards \(q_{\text {new }}\) of the first tree
\(\mathcal{T}_{i}\).addNode \(\left(q_{\text {init }}\right)\)
\(2 \mathcal{T}_{g}\).addNode \(\left(q_{\text {goal }}\right)\)
3 for \(i=1, \ldots, I_{\text {max }}\) do
\(4 \quad q_{\text {rand }}=\) generate randomly in \(\mathcal{C}\)
\(5 \quad q_{\text {near }}=\) find nearest node in \(\mathcal{T}_{i}\) towards \(q_{\text {rand }}\)
\(6 \quad q_{\text {new }}=\) localPlanner from \(q_{\text {near }}\) towards \(q_{\text {rand }}\)
7 if canConnect \(\left(q_{\text {near }}, q_{\text {new }}\right)\) then
8
\(\mathcal{T}_{i}\).addNode \(\left(q_{\text {new }}\right)\)
\(\mathcal{T}_{i}\).addEdge \(\left(q_{\text {near }}, q_{\text {new }}\right)\)
\(q_{\text {near }}^{\prime}=\) find nearest node in \(\mathcal{T}_{g}\) towards \(q_{\text {new }}\)
\(q_{\text {new }}^{\prime}=\) localPlanner from \(q_{\text {near }}\) towards \(q_{\text {rand }}\)
if canConnect \(\left(q_{\text {near }}^{\prime}, q_{\text {new }}^{\prime}\right)\) then
\(\mathcal{T}_{g}\).addNode \(\left(q_{\text {new }}\right)\)
\(\mathcal{T}_{g}\).addEdge \(\left(q_{\text {near }}, q_{\text {new }}\right)\)
if canConnect \(\left(q_{\text {new }}^{\prime}, q_{\text {new }}\right)\) then joint trees
return path from \(q_{\text {init }}\) to \(q_{\text {goal }}\)
\(\left\lfloor\mathcal{T}_{i}, \mathcal{T}_{g}=\mathcal{T}_{g}, \mathcal{T}_{i}\right.\)

\[
2
\]
- Use two trees: \(\mathcal{T}_{i}\) rooted at \(q_{\text {init }}, \mathcal{T}_{g}\) rooted \(q_{\text {goal }}\)
- One tree expands towards \(q_{\text {rand }}\), second tree expands towards \(q_{\text {new }}\) of the first tree
- Helps to enter narrow passages (sometimes)
- Connection of two trees
- Computationally intensive
- To speed up, performs only if \(\varrho\left(q_{\text {new }}, q_{\text {new }}^{\prime}\right)\) is small enough
- Difficult if motion model/constraints have to be considered
- Balanced trees: swap trees if \(\left|\mathcal{T}_{i}\right|>\left|\mathcal{T}_{g}\right|\)


\section*{Original PRM/sPRM}
- Uniform sampling \(q \sim U(\mathcal{C})\) Gaussian sampling: two-samples
- Uniform sample \(q_{1} \sim U(\mathcal{C})\), then another sample \(q_{2} \sim N(q, \Sigma)\) (around \(q_{1}\) from Gaussian distribution)
- Ignore if \(q_{1}, q_{2} \in \mathcal{C}_{\text {free }}\) or \(q_{1}, q_{2} \in \mathcal{C}_{\text {obs }}\), otherwise
- add the collision-free one to the roadmap
- Generates the random samples near \(\mathcal{C}_{\text {obs }}\) only!

\section*{Gaussian + uniform}
- Combination of two previous methods
- More dense sampling around \(\mathcal{C}_{\text {obs }}\) than basic PRM

\section*{Bridge test}
- Generate \(q_{1}\) and \(q_{2}\) using the Gaussian method
- Determine the midpoint \(q^{\prime}\) on the line segment \(\left|q_{1}, q_{2}\right|\)
- Use \(q^{\prime}\) if \(q^{\prime} \in \mathcal{C}_{\text {free }}\) and \(q_{1}, q_{2} \in \mathcal{C}_{\text {obs }}\)


Gaussian


Gaussian + Uniform


Bridge-Test
- Build PRM roadmap, but without collision detection of edges
- After a path is found, edges are checked for collision and the path is recalculated
- If no path is found, extend the roadmap by new samples/edges
- Otherwise, the path is collision-free

- Faster planning in certain scenarios, but not always!
- R. Bohlin and L. E. Kavraki, "Path planning using lazy PRM," IEEE ICRA, 2000.

PRM variants II: Lazy PRM
```

