B0B36DBS: Database Systems | Classes 11 and 12: Functional Dependencies

```
01: Closure of a Set of FDs
```

```
F+}=
```

F+}=
// A1 triviality
// A1 triviality
A->A,B->B, C->C,
A->A,B->B, C->C,
AB->A,AB->B,AB->AB,AC->A,AC}->\textrm{C},\textrm{AC}->\textrm{AC},\textrm{BC}->\textrm{B},\textrm{BC}->\textrm{C},\textrm{BC}->\textrm{BC}
AB->A,AB->B,AB->AB,AC->A,AC}->\textrm{C},\textrm{AC}->\textrm{AC},\textrm{BC}->\textrm{B},\textrm{BC}->\textrm{C},\textrm{BC}->\textrm{BC}
ABC->A, ABC->B, ABC->C, ABC->AB, ABC->AC, ABC->BC, ABC->ABC,
ABC->A, ABC->B, ABC->C, ABC->AB, ABC->AC, ABC->BC, ABC->ABC,
// Assumptions
// Assumptions
A}->B
A}->B
// A3 composition
// A3 composition
A}->AB\mathrm{ ,
A}->AB\mathrm{ ,
// A2 transitivity
// A2 transitivity
AC}->\textrm{B}
AC}->\textrm{B}
// A3 composition
// A3 composition
AC}->AB,AC->BC,AC->AB
AC}->AB,AC->BC,AC->AB
}

```
}
```


02: Cover of a Set of FDs

```
F = {
    A->C, // F1
    BC->D, // E2
    C}->\textrm{E}, // F
    E->A // F4
}
G = {
    A->CE, // G1
    C->A, // G2
    E->AE, // G3
    AB->D // G4
}
```

Successful derivation of dependency G1 $(A \rightarrow C E)$ using all the dependencies in F

```
R1: A }->\textrm{C}\mathrm{ (F1)
R2: C->E (F3)
R3: A }->\textrm{E}\mathrm{ (R1, R2, A2 transitivity)
R4: A CCE (R1, R3, A3 composition)
```

Successful derivation of dependency $\mathrm{G} 2(\mathrm{C} \rightarrow \mathrm{A})$ using all the dependencies in F

```
R1: C->E (F3)
R2: E->A (F4)
R3: C }->\mathbf{A}\mathrm{ (R1, R2, A2 transitivity)
```

Successful derivation of dependency $G 3(E \rightarrow A E)$ using all the dependencies in F
R1: $\mathrm{E} \rightarrow \mathrm{E}$ (A1 triviality)
R2: $\mathrm{E} \rightarrow \mathrm{A}$ (F4)
R3: $\mathbf{E} \rightarrow \mathbf{A E}$ (R1, R2, A3 composition)
Successful derivation of dependency $\mathrm{G4}(\mathrm{AB} \rightarrow \mathrm{D})$ using all the dependencies in F

```
R1: AB->A (A1 triviality)
R2: A }->\textrm{C}\mathrm{ (F1)
R3: AB->C (R1, R2, A2 transitivity)
R4: AB->B (A1 triviality)
R5: AB }->\textrm{BC}\mathrm{ (R3, R4, A3 composition)
R6: BC->D (F2)
R7: AB->D (R5, R6, A2 transitivity)
```

Analogously, we also need to verify that every single functional dependency in F can be successfully derived using the dependencies in G

Conclusion: yes, F is a cover of G , as well as G is a cover of F (this relation is symmetrical)

03: Redundant FDs

```
F = {
    AC->B, // F1
    E->B, // E2
    D->C, // F3
    AC->E, // F4
    E->AC // F5
}
```

Successful derivation of dependency $F 1(A C \rightarrow B)$ using all the remaining dependencies in the original F
R1: $A C \rightarrow E(F 4)$
R2: $E \rightarrow B$ (F 2)
R3: $\mathbf{A C} \rightarrow \mathbf{B}$ (R1, R2, A2 transitivity)

Successful derivation of dependency $\mathrm{F} 2(\mathrm{E} \rightarrow \mathrm{B})$ using all the remaining dependencies in the original F

```
R1: E->AC (F5)
R2: AC }->\textrm{B}\mathrm{ (F1)
R3: E->B (R1, R2, A2 transitivity)
```

Conclusion: both the dependencies F1 and F2 are redundant when assessed individually, but after one of them is removed, the other will no longer be redundant as a result (F1 was needed for the derivation of F2 and vice versa)

04: Attribute Closures

```
F={
    AB}->\textrm{D}, / / F
    A}->\textrm{CE}, // E
    F}->\textrm{F}, // F
    C->A, // F4
    E->AE / / F5
}
A+}=
    A, // A1 triviality
    C, E // F2
}
F+}=
    F // Al triviality
}
BC+}=
    B, C, // Al triviality
    A, // F4
    D, / / F1
    E // F2
}
ABF+}=
    A, B, F, // A1 triviality
    D, / / F1
    C, E / / F2
}
```

Observation: ABF is a super-key (since its attribute closure contains all the attributes), but not necessarily a key

05: Cover of a Set of FDs

```
F = {
    A->BEF, // F1
    BC->DE, // F2
    BDE->F, // F3
    ADF->CE, // F4
    E->CBD // F5
}
G = {
    A->B, // G1
    AB->E, // G2
    AD->C, // G3
    BC->E, // G4
    BCE->FD, // G5
    E->C, // G6
    CE->B // G7
}
```

Successful derivation of dependency F1 ($A \rightarrow B E F$) using all the dependencies in G

```
\mp@subsup{A}{}{+}}=
    A, // A1 triviality
    B, // G1
    E, // G2
    C, // G6
    F, D // G5
} \supseteq{B,E,E}
```

Analogously for all the remaining functional dependencies in F using G and vice versa Conclusion: yes, F is a cover of G , as well as G is a cover of F

06: Redundant FDs

```
\(\mathrm{F}=\{\)
    \(\mathrm{A} \rightarrow \mathrm{C}, ~ / / \mathrm{F} 1\)
    \(\mathrm{B} \rightarrow \mathrm{A}, ~ / / \mathrm{F} 2\)
    \(\mathrm{D} \rightarrow \mathrm{AB}, / / \mathrm{F} 3\)
    \(\mathrm{B} \rightarrow \mathrm{C}, ~ / / \mathrm{F} 4\)
    D \(\rightarrow\) C // F5
\}
```

$F 1(A \rightarrow C)$ is not redundant since A^{+}using all the remaining FDs (all except F1) does not contain C

```
A+
    A // A1 triviality
}
```

$F 2(B \rightarrow A)$ is not redundant since B^{+}using all the remaining FDs (all except $F 2$) does not contain A

```
B+
    B, // A1 triviality
    C // F4
}
```

F3 ($D \rightarrow A B$) is not redundant since D^{+}using all the remaining FDs (all except F3) does not contain both A and B

```
D+ using F1, F2, F4 and F5 = {
```

 D, // Al triviality
 C / / F5
 \}
$F 4(B \rightarrow C)$ is redundant since B^{+}using all the remaining FDs (all except F4) contains C, and so $F 4$ can be removed

```
B+
    B, // Al triviality
    A, // F2
    C // F1
} \supseteq {C }
```

F5 ($D \rightarrow C$) is also redundant since D^{+}using all the remaining FDs (all except F5 and F4) contains C

```
D+ using F1, F2 and F3 = {
    D, // Al triviality
    A, B, // F3
    C // F1
} \supseteq {\underline{C}}
```

Conclusion: both F4 $(\mathrm{B} \rightarrow \mathrm{C})$ and $\mathrm{F} 5(\mathrm{D} \rightarrow \mathrm{C})$ were redundant and could be removed

07: Redundant Attributes

```
F = {
    AB->D, // F1
    A->CE, // E2
    C->A, // F3
    E->AE, // F4
    F->B, // F5
    BCEF->A // F6
}
```

Attribute A is not redundant in $F 1(A B \rightarrow D)$ since attribute closure of all the remaining attributes (i.e. just B) does not contain D, and so it cannot be removed

```
\mp@subsup{B}{}{+}}=
    B // A1 triviality
}
```

Attribute B is not redundant in $F 1(A B \rightarrow D)$, and so it cannot be removed as well

```
\mp@subsup{A}{}{+}}=
    A, // A1 triviality
    C, E // F2
}
```

Conclusion: there are no redundant attributes in $\mathrm{F} 1(\mathrm{AB} \rightarrow \mathrm{D})$

Attribute B is redundant in $\mathrm{F} 6(\mathrm{BCEF} \rightarrow \mathrm{A})$, and so F 6 can be replaced with $\mathrm{F} 6^{\prime}(\mathrm{CEF} \rightarrow \mathrm{A})$

```
CEF+}=
    C, E, F, // A1 triviality
    A, // F3
    B, // F5
    D // F1
} \supseteq {\underline{A}}
```

Attribute C is redundant in F6' $^{\prime}(C E F \rightarrow A)$, and so F6' can be replaced with $6^{\prime \prime}(E F \rightarrow A)$

```
EF
    E, F, // Al triviality
    A, // F4
    C, // F2
    B, // F5
    D // F1
} \supseteq {\underline{A}}
```

Attribute E is not redundant in F 6 " $(\mathrm{EF} \rightarrow \mathrm{A})$, and so it cannot be removed

```
\mp@subsup{F}{}{+}}=
    F, // Al triviality
    B // F5
}
```

Attribute F is redundant in $F 6$ ' $(E F \rightarrow A)$, and so $F 6$ ' can be replaced with $F 6$ '" ($\mathrm{E} \rightarrow \mathrm{A}$)

```
E+}=
    E, // Al triviality
    A, // F4
    C // F2
} \supseteq {\underline{A}}
```

Conclusion: attributes B, C and F were redundant in $F 6(B C E F \rightarrow A)$, and so $F 6$ could be replaced with $F 6$ "' $(E \rightarrow A)$

08: Minimal Cover of a Set of FDs

Solution 1
$\mathrm{BC} \rightarrow \mathrm{D}, \mathrm{BC} \rightarrow \mathrm{E}, \mathrm{DE} \rightarrow \mathrm{B}, \mathrm{CE} \rightarrow \mathrm{A}, \mathrm{CE} \rightarrow \mathrm{B}$

Solution 2
$\mathrm{BC} \rightarrow \mathrm{A}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{BC} \rightarrow \mathrm{E}, \mathrm{DE} \rightarrow \mathrm{B}, \mathrm{CE} \rightarrow \mathrm{B}$

09: Minimal Cover of a Set of FDs

$\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{C} \rightarrow \mathrm{A}, \mathrm{BC} \rightarrow \mathrm{D}, \mathrm{D} \rightarrow \mathrm{E}, \mathrm{D} \rightarrow \mathrm{G}, \mathrm{BE} \rightarrow \mathrm{C}, \mathrm{CG} \rightarrow \mathrm{B}, \mathrm{CE} \rightarrow \mathrm{G}$

10: Minimal Cover of a Set of FDs

Solution: there are no redundant attributes and nor redundant dependencies
$\mathrm{AB} \rightarrow \mathrm{H}, \mathrm{EB} \rightarrow \mathrm{C}, \mathrm{BC} \rightarrow \mathrm{A}, \mathrm{C} \rightarrow \mathrm{F}, \mathrm{F} \rightarrow \mathrm{G}, \mathrm{A} \rightarrow \mathrm{E}, \mathrm{A} \rightarrow \mathrm{C}, \mathrm{E} \rightarrow \mathrm{D}$

11: First Key

We start with a trivial super-key ABCDE (i.e. a super-key containing all the attributes) and remove all redundant attributes from a trivial functional dependency $A B C D E \rightarrow A B C D E$
Attribute A is not redundant in $A B C D E \rightarrow A B C D E$

```
BCDE+}=
    B, C, D, E // Al triviality
}
```

Attribute B is redundant in $A B C D E \rightarrow A B C D E$, and so we obtain a simplified dependency $A C D E \rightarrow A B C D E$

```
ACDE+ = {
    A, C, D, E, // Al triviality
    B // F2 or F3
}
```

Attribute C is not redundant in $\mathrm{ACDE} \rightarrow \mathrm{ABCDE}$

```
ADE+}= 
    A, D, E, // A1 triviality
    B / / F2
}
```

Attribute D is redundant in $A C D E \rightarrow A B C D E$, and so we obtain a simplified dependency $A C E \rightarrow A B C D E$

```
ACE+}=
    A, C, E, // Al triviality
    B, // F3
    D // F1
}
```

Attribute E is not redundant in $\mathrm{ACE} \rightarrow \mathrm{ABCDE}$

```
AC+}=
    A, C // Al triviality
}
```

Conclusion: the first key is ACE

12: All Keys

Assumption: we already have one key, in particular the first key ACE (see above)
The initial working set of found keys is $\{A C E\}$
Step 1: processing of a key ACE (the first not yet processed key from the current working set of keys):
Dependency F1: BC \rightarrow DE
Let us have a look at the intersection of the current key with the right side of this dependency
$A C E \cap D E \neq \emptyset$
Since this intersection is not empty, we will find a new key candidate
We take the current key, remove attributes from the right side and add attributes from the left side $(A C E \backslash D E) \cup B C=A C \cup B C=A B C$
The current working set does not contain even a single key that would be a subset of this candidate Therefore we continue and remove redundant attributes from ABC in order to obtain a new key There are no such redundant attributes
Hence $A B C$ is a newly found key, we add it into the current working set of keys
Dependency F2: DE $\rightarrow B$
$A C E \cap B=\emptyset$ and thus this functional dependency cannot be used to find a new key
Dependency F3: CE $\rightarrow B$
$A C E \cap B=\varnothing$
The current working set of found keys is $\{A C E, A B C\}$
Step 2: processing of a key $A B C$:
Dependency F1: BC \rightarrow DE
$A B C \cap D E=\varnothing$
Dependency F2: DE $\rightarrow B$
$A B C \cap B \neq \varnothing$
$(A B C \backslash B) \cup D E=A C \cup D E=A C D E$
$A C E \subseteq A C D E$ and therefore this candidate will not be further considered
Dependency F3: $\mathrm{CE} \rightarrow \mathrm{B}$
$A B C \cap B \neq \varnothing$
$(A B C \backslash B) \cup C E=A C \cup C E=A C E$
$A C E \subseteq A C E$ and therefore this candidate will not be further considered as well
All keys from the working set were successfully processed
Conclusion: $\{\mathrm{ACE}, \mathrm{ABC}\}$ are all keys

13: All Keys

ADF, ABF, ACF

14: Normal Forms

The provided relational schema is in 3NF

	$1 N F$	$2 N F$	$3 N F$	BCNF	
$\mathbf{B C} \rightarrow \mathbf{D}:$	yes	yes	yes	yes	BCNF
$\mathbf{B C} \rightarrow \mathbf{E}:$	yes	yes	yes	yes	$\mathbf{B C N F}$
$\mathbf{D E} \rightarrow \mathrm{B}:$	yes	yes	yes	no	3NF
$\mathbf{C E} \rightarrow \mathbf{B}:$	yes yes yes yes	BCNF			

