

B0B36DBS: Database Systems | Classes 11 and 12: Functional Dependencies

01: Closure of a Set of FDs

F+ = {

 // A1 triviality

 A→A, B→B, C→C,

 AB→A, AB→B, AB→AB, AC→A, AC→C, AC→AC, BC→B, BC→C, BC→BC,

 ABC→A, ABC→B, ABC→C, ABC→AB, ABC→AC, ABC→BC, ABC→ABC,
 // Assumptions

 A→B,
 // A3 composition

 A→AB,
 // A2 transitivity

 AC→B,
 // A3 composition

 AC→AB, AC→BC, AC→ABC
}

02: Cover of a Set of FDs

F = {

 A→C, // F1

 BC→D, // F2

 C→E, // F3

 E→A // F4
}

G = {

 A→CE, // G1

 C→A, // G2

 E→AE, // G3

 AB→D // G4
}

Successful derivation of dependency G1 (A→CE) using all the dependencies in F

R1: A→C (F1)

R2: C→E (F3)

R3: A→E (R1, R2, A2 transitivity)

R4: A→CE (R1, R3, A3 composition)

Successful derivation of dependency G2 (C→A) using all the dependencies in F

R1: C→E (F3)

R2: E→A (F4)

R3: C→A (R1, R2, A2 transitivity)

Successful derivation of dependency G3 (E→AE) using all the dependencies in F

R1: E→E (A1 triviality)

R2: E→A (F4)

R3: E→AE (R1, R2, A3 composition)

Successful derivation of dependency G4 (AB→D) using all the dependencies in F

R1: AB→A (A1 triviality)

R2: A→C (F1)

R3: AB→C (R1, R2, A2 transitivity)

R4: AB→B (A1 triviality)

R5: AB→BC (R3, R4, A3 composition)

R6: BC→D (F2)

R7: AB→D (R5, R6, A2 transitivity)

Analogously, we also need to verify that every single functional dependency in F can be successfully derived using
the dependencies in G

Conclusion: yes, F is a cover of G, as well as G is a cover of F (this relation is symmetrical)

03: Redundant FDs

F = {

 AC→B, // F1

 E→B, // F2

 D→C, // F3

 AC→E, // F4

 E→AC // F5
}

Successful derivation of dependency F1 (AC→B) using all the remaining dependencies in the original F

R1: AC→E (F4)

R2: E→B (F2)

R3: AC→B (R1, R2, A2 transitivity)

Successful derivation of dependency F2 (E→B) using all the remaining dependencies in the original F

R1: E→AC (F5)

R2: AC→B (F1)

R3: E→B (R1, R2, A2 transitivity)

Conclusion: both the dependencies F1 and F2 are redundant when assessed individually, but after one of them is
removed, the other will no longer be redundant as a result (F1 was needed for the derivation of F2 and vice versa)

04: Attribute Closures

F = {

 AB→D, // F1

 A→CE, // F2

 F→F, // F3

 C→A, // F4

 E→AE // F5
}

A+ = {

 A, // A1 triviality

 C, E // F2

}

F+ = {

 F // A1 triviality

}

BC+ = {

 B, C, // A1 triviality

 A, // F4

 D, // F1

 E // F2

}

ABF+ = {

 A, B, F, // A1 triviality

 D, // F1

 C, E // F2

}

Observation: ABF is a super-key (since its attribute closure contains all the attributes), but not necessarily a key

05: Cover of a Set of FDs

F = {

 A→BEF, // F1

 BC→DE, // F2

 BDE→F, // F3

 ADF→CE, // F4

 E→CBD // F5
}

G = {

 A→B, // G1

 AB→E, // G2

 AD→C, // G3

 BC→E, // G4

 BCE→FD, // G5

 E→C, // G6

 CE→B // G7
}

Successful derivation of dependency F1 (A→BEF) using all the dependencies in G

A+ = {

 A, // A1 triviality

 B, // G1

 E, // G2

 C, // G6

 F, D // G5

} ⊇ {B, E, F}

Analogously for all the remaining functional dependencies in F using G and vice versa

Conclusion: yes, F is a cover of G, as well as G is a cover of F

06: Redundant FDs

F = {

 A→C, // F1

 B→A, // F2

 D→AB, // F3

 B→C, // F4

 D→C // F5
}

F1 (A→C) is not redundant since A+ using all the remaining FDs (all except F1) does not contain C

A+ using F2, F3, F4 and F5 = {

 A // A1 triviality

}

F2 (B→A) is not redundant since B+ using all the remaining FDs (all except F2) does not contain A

B+ using F1, F3, F4 and F5 = {

 B, // A1 triviality

 C // F4

}

F3 (D→AB) is not redundant since D+ using all the remaining FDs (all except F3) does not contain both A and B

D+ using F1, F2, F4 and F5 = {

 D, // A1 triviality

 C // F5

}

F4 (B→C) is redundant since B+ using all the remaining FDs (all except F4) contains C, and so F4 can be removed

B+ using F1, F2, F3 and F5 = {

 B, // A1 triviality

 A, // F2

 C // F1

} ⊇ {C}

F5 (D→C) is also redundant since D+ using all the remaining FDs (all except F5 and F4) contains C

D+ using F1, F2 and F3 = {

 D, // A1 triviality

 A, B, // F3

 C // F1

} ⊇ {C}

Conclusion: both F4 (B→C) and F5 (D→C) were redundant and could be removed

07: Redundant Attributes

F = {

 AB→D, // F1

 A→CE, // F2

 C→A, // F3

 E→AE, // F4

 F→B, // F5

 BCEF→A // F6
}

Attribute A is not redundant in F1 (AB→D) since attribute closure of all the remaining attributes (i.e. just B) does
not contain D, and so it cannot be removed

B+ = {

 B // A1 triviality

}

Attribute B is not redundant in F1 (AB→D), and so it cannot be removed as well

A+ = {

 A, // A1 triviality

 C, E // F2

}

Conclusion: there are no redundant attributes in F1 (AB→D)

Attribute B is redundant in F6 (BCEF→A), and so F6 can be replaced with F6' (CEF→A)

CEF+ = {

 C, E, F, // A1 triviality

 A, // F3

 B, // F5

 D // F1

} ⊇ {A}

Attribute C is redundant in F6' (CEF→A), and so F6' can be replaced with F6'' (EF→A)

EF+ = {

 E, F, // A1 triviality

 A, // F4

 C, // F2

 B, // F5

 D // F1

} ⊇ {A}

Attribute E is not redundant in F6'' (EF→A), and so it cannot be removed

F+ = {

 F, // A1 triviality

 B // F5

}

Attribute F is redundant in F6'' (EF→A), and so F6'' can be replaced with F6''' (E→A)

E+ = {

 E, // A1 triviality

 A, // F4

 C // F2

} ⊇ {A}

Conclusion: attributes B, C and F were redundant in F6 (BCEF→A), and so F6 could be replaced with F6''' (E→A)

08: Minimal Cover of a Set of FDs

Solution 1

BC→D, BC→E, DE→B, CE→A, CE→B

Solution 2

BC→A, BC→D, BC→E, DE→B, CE→B

09: Minimal Cover of a Set of FDs

AB→C, C→A, BC→D, D→E, D→G, BE→C, CG→B, CE→G

10: Minimal Cover of a Set of FDs

Solution: there are no redundant attributes and nor redundant dependencies

AB→H, EB→C, BC→A, C→F, F→G, A→E, A→C, E→D

11: First Key

We start with a trivial super-key ABCDE (i.e. a super-key containing all the attributes) and remove all redundant
attributes from a trivial functional dependency ABCDE→ABCDE

Attribute A is not redundant in ABCDE→ABCDE

BCDE+ = {

 B, C, D, E // A1 triviality

}

Attribute B is redundant in ABCDE→ABCDE, and so we obtain a simplified dependency ACDE→ABCDE

ACDE+ = {

 A, C, D, E, // A1 triviality

 B // F2 or F3

}

Attribute C is not redundant in ACDE→ABCDE

ADE+ = {

 A, D, E, // A1 triviality

 B // F2

}

Attribute D is redundant in ACDE→ABCDE, and so we obtain a simplified dependency ACE→ABCDE

ACE+ = {

 A, C, E, // A1 triviality

 B, // F3

 D // F1

}

Attribute E is not redundant in ACE→ABCDE

AC+ = {

 A, C // A1 triviality

}

Conclusion: the first key is ACE

12: All Keys

Assumption: we already have one key, in particular the first key ACE (see above)

The initial working set of found keys is {ACE}

Step 1: processing of a key ACE (the first not yet processed key from the current working set of keys):

Dependency F1: BC→DE
Let us have a look at the intersection of the current key with the right side of this dependency
ACE ∩ DE ≠ ∅
Since this intersection is not empty, we will find a new key candidate
We take the current key, remove attributes from the right side and add attributes from the left side
(ACE ∖ DE) ∪ BC = AC ∪ BC = ABC
The current working set does not contain even a single key that would be a subset of this candidate
Therefore we continue and remove redundant attributes from ABC in order to obtain a new key
There are no such redundant attributes
Hence ABC is a newly found key, we add it into the current working set of keys

Dependency F2: DE→B
ACE ∩ B = ∅ and thus this functional dependency cannot be used to find a new key

Dependency F3: CE→B
ACE ∩ B = ∅

The current working set of found keys is {ACE, ABC}

Step 2: processing of a key ABC:

Dependency F1: BC→DE
ABC ∩ DE = ∅

Dependency F2: DE→B
ABC ∩ B ≠ ∅
(ABC ∖ B) ∪ DE = AC ∪ DE = ACDE
ACE ⊆ ACDE and therefore this candidate will not be further considered

Dependency F3: CE→B
ABC ∩ B ≠ ∅
(ABC ∖ B) ∪ CE = AC ∪ CE = ACE
ACE ⊆ ACE and therefore this candidate will not be further considered as well

All keys from the working set were successfully processed

Conclusion: {ACE, ABC} are all keys

13: All Keys

ADF, ABF, ACF

14: Normal Forms

The provided relational schema is in 3NF

 1NF 2NF 3NF BCNF

BC→D: yes yes yes yes BCNF

BC→E: yes yes yes yes BCNF

DE→B: yes yes yes no 3NF

CE→B: yes yes yes yes BCNF

