BOB36DBS: Database Systems

http://www.ksi.mff.cuni.cz/~svoboda/courses/202-B0B36DBS/

Query Evaluation

Martin Svoboda martin.svoboda@fel.cvut.cz

13. 4. 2021

Czech Technical University in Prague, Faculty of Electrical Engineering

Lecture Outline

Evaluation algorithms

- External sort
- Nested loops join
- Sort-merge join

Query evaluation

- Query evaluation plans
- Optimization techniques

Introduction

Evaluation of SQL queries

- SELECT statements
 - SELECT ... FROM ... WHERE ... ORDER BY ...

Transformation to (extended) relational algebra

- Selection, projection, attribute renaming
- Set operations: union, intersection, difference
- Inner joins: Cartesian product, natural join, theta join
- Left / right natural / theta semijoin and antijoin
- Left / right / full outer natural / theta join
- Division
- Sorting, grouping and aggregation, distinct, ...

Naive Algorithms

Selection: $\sigma_{\varphi}(E)$

• Iteration over all items and removal of those not satisfying a given filtering condition

Projection: $\pi_{a_1,...,a_n}(E)$

- Iteration over all items and removal of excluded attributes
- Removal of duplicates within the traditional relational model

Distinct

Sorting of all items and removal of adjacent duplicates

Inner joins: $E_R \times E_S$, $E_R \bowtie E_S$, $E_R \bowtie_{\varphi} E_S$

- Iteration over all the possible combinations via nested loops
 Sorting
 - Quick sort, heap sort, bubble sort, insertion sort, ...

Challenges

Blocks

- Atomic read / write operations at the level of blocks only
- I.e., individual items cannot be accessed directly
 - Primary files, index structures, system catalogs

Latency

- Traditional magnetic hard disks are extremely slow
- Efficient management of cached pages is essential

Memory

- Size of available system memory will always be limited
- \Rightarrow external algorithms are needed

Objective

Query evaluation plan

 Based on the context and available system memory, suitable evaluation algorithm needs to be selected for every involved operation so that the overall cost is minimal

Knowledge of context

- Relational schema (tables, columns, data types)
- Integrity constraints (primary / unique / foreign keys)
- Data organization (heap / sorted / hashed file)
- Index structures (B⁺-trees, ...)
- Available statistics (min / max values, histograms, ...)

Available Statistics

Environment

- B: size of a block / page, usually $\approx 4 \, kB$
- *M*: number of available **system memory** pages

Relation R and its attribute A

- *n_R*: number of tuples in R
- *s_R*: (average) tuple size
- $b_R \approx \lfloor B/s_R \rfloor$: blocking factor
 - Number of tuples that can be stored within one block
- $p_R \approx \lceil n_R/b_R \rceil$: number of blocks
- *V_{R.A}*: cardinality of the active domain of A
 - Number of distinct values of A occurring in R

Available Statistics

B⁺-tree index for relation R and its attribute A

- *f_{R.A}*: (average) **number of followers** in an inner node
 - Usually ≈ 100
- *I_{R.A}*: index depth
 - Usually $\approx 2-3$
- *p*_{*R.A*}: number of **leaf nodes**

External Sort

External Sort

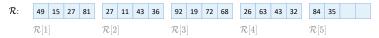
N-way external merge sort algorithm

- Sorting phase (pass 1)
 - Groups of input blocks are loaded into the system memory
 - Items in these blocks are sorted
 - Any in-memory in-place sorting algorithm can be used
 - E.g.: quick sort, heap sort, bubble sort, insertion sort, ...
 - Created runs are written into a temporary file
- Merging phase (passes 2 and higher)
 - Groups of runs are loaded into the memory and merged
 - Newly created (longer) runs are written back on a hard drive
 - Merging is finished when just one run is obtained

Sorting Phase

Pass 1

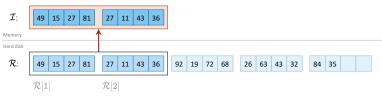
Input file



• Input buffer ${\mathcal I}$ in the system memory

• Size, e.g., M = 2 blocks

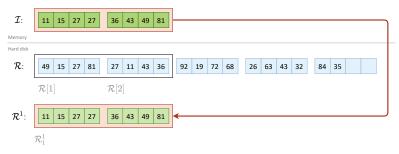
• The first M blocks are loaded from ${\mathcal R}$ into ${\mathcal I}$



Sorting Phase

Pass 1 (cont'd)

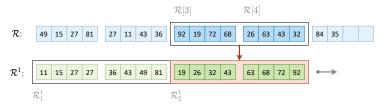
• Items in ${\mathcal I}$ are sorted and a yielded run is written into ${\mathcal R}^1$



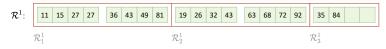
Sorting Phase

Pass 1 (cont'd)

- Next $M \operatorname{blocks}$ are processed and another run is produced



All the remaining input blocks from R are processed as well



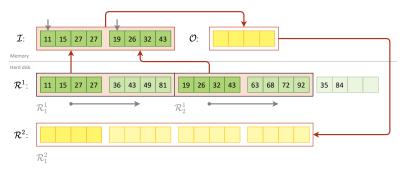
Sorting phase is completed and R¹ finalized

Merging Phase

Pass 2

• The first *M* runs are merged together to a new longer run

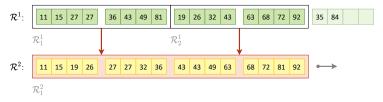
- Blocks from these input runs are gradually loaded into *I*
- Minimal items are iteratively searched for and moved to ${\mathcal O}$
- Output buffer \mathcal{O} is written into \mathcal{R}^2 whenever full



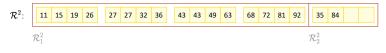
Merging Phase

Pass 2 (cont'd)

• The first *M* runs are merged together to a new longer run



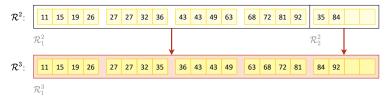
All the remaining groups of M runs are merged as well



Merging Phase

Pass 3

Merging continues until just a single run is acquired



Algorithm

Sorting phase (pass 1)

1 $p \leftarrow 1$ 2 **foreach** group of blocks B_1, \ldots, B_M (if any) from \mathcal{R} **do** 3 read these blocks to \mathcal{I} 4 sort all items in \mathcal{I} 5 write all blocks from \mathcal{I} as a new run to a temp file \mathcal{R}^p

Algorithm

Merging phase (passes 2 and higher)

⁶ while \mathcal{R}^p has more then just one run **do**

```
p \leftarrow p+1
 7
         foreach group of runs R_1, \ldots, R_M (if any) from \mathcal{R}^{p-1} do
 8
              start constructing a new run in \mathcal{R}^p
 9
              read the first block from each run R_x to \mathcal{I}[x]
10
              while \mathcal{I} contains at least one item do
11
                   find the minimal item and move it to {\cal O}
12
                   if the corresponding \mathcal{I}[x] became empty then
13
                        read the next block from R_x (if any) to \mathcal{I}[x]
14
                   if \mathcal{O} is full then write \mathcal{O} to \mathcal{R}^p
15
              if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{R}^p
16
```

Summary

System memory usage

- Sorting phase (**pass 1**): *M* pages
 - Input buffer I: M pages

- Merging phase (passes 2 and higher): M+1 pages
 - Input buffer $\mathcal{I}: M \geq 2$ pages
 - Output buffer O: 1 page

Summary

Time complexity

- Single pass (both during the sorting and merging phases)
 - $c_{\texttt{read}} = c_{\texttt{write}} = p_R$
- Number of passes
 - $t = \lceil \log_M(p_R) \rceil$
- Overall cost

•
$$c = t \cdot (c_{\texttt{read}} + c_{\texttt{write}}) = \lceil \log_M(p_R) \rceil \cdot 2p_R$$

Limitation of the overall number of passes

In general...

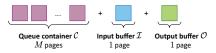
•
$$M = \left\lceil \sqrt[t]{p_R} \right\rceil$$

• Specifically for t = 2 (exactly 2 passes)

•
$$M = \lceil \sqrt{p_R} \rceil$$

Priority queue

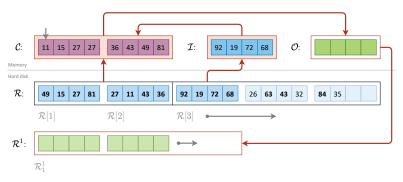
- Sorting phase is modified
 - Priority queue is involved
 - In particular, min-heap data structure is used
 - Minimal items are iteratively found and put to the current run
 - New input items are in turn added to the queue
- System memory usage: M + 1 + 1 pages
 - Queue container \mathcal{C} : $M \ge 1$ pages
 - Input buffer I: 1 page
 - Output buffer O: 1 page



Improved Sorting Phase

Pass 1

- Priority queue and input buffer are initialized
- Runs are generated on the fly
 - Minimal item greater than or equal to the last value is always extracted and replaced with a new item from the input file



Improved Sorting Phase

Pass 1 (cont'd)

Two runs are obtained in this case

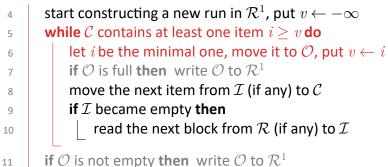
Impact

- Created runs tend to be longer
 - 2M blocks on average (instead of just M)
 - p_R in the best case
 - *M* in the worst case
- \Rightarrow number of runs will tend to be lower

Algorithm

Improved sorting phase (pass 1)

- $_{1}\;$ read blocks $\mathcal{R}[1],\ldots,\mathcal{R}[M]$ (if any) from \mathcal{R} to \mathcal{C}
- $_2~$ read block $\mathcal{R}[M+1]$ (if any) from \mathcal{R} to \mathcal{I}
- $_{3}~$ while ${\cal C}$ contains at least one item do



Nested Loops Join

Nested Loops

Binary (block) nested loops algorithm

- Universal approach for all kinds of inner joins
 - Natural join, cross join, theta join
 - Allows duplicate items
 - Requires no indexes
- Not the best option in all situations
 - Suitable for tables with significantly different sizes

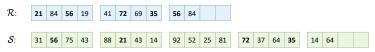
Idea

- Outer loop: iteration over the blocks of the first table
- Inner loop: iteration over the blocks of the second table

Nested Loops

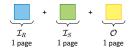
Sample input data

- Tables ${\mathcal R}$ and ${\mathcal S}$ to be joined using a value equality test



Basic configuration

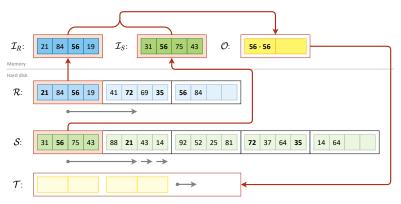
- System memory usage: 1 + 1 + 1 pages
 - Input buffer *I_R*: 1 page
 - Input buffer *I*_S: 1 page
 - Output buffer O: 1 page



Nested Loops

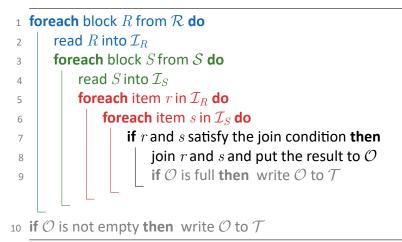
Basic configuration (1 + 1 + 1)

• Items already loaded into the system memory are joined using a naive algorithm, joined pairs are put into the output buffer



Algorithm

Basic configuration (1 + 1 + 1)



Observations

Resulting table

• Table ${\mathcal T}$ with pairs of joined items

T: 56.56 21.21 72.72 35.35 56.56

Time complexity

• Basic configuration (1 + 1 + 1)

•
$$c_{\text{read}} = p_R + p_R \cdot p_S$$

- $c_{\text{write}} = \lceil n_T / b_T \rceil$
 - n_T is the number of joined items
 - b_T is the resulting blocking factor
- \Rightarrow smaller table should always be taken as the outer one

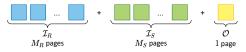
Zig-zag reading of the inner table

- Principle
 - Odd iterations normally
 - Even iterations in the reverse order
- Time complexity

•
$$c_{\text{read}} = p_R + p_R \cdot (p_S - 1) + 1$$

Generic configuration

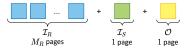
- What if multiple pages were used for both the input buffers?
- $M_R + M_S + 1$ pages
 - Input buffer \$\mathcal{I}_R\$: \$M_R\$ pages
 - Input buffer \mathcal{I}_S : M_S pages
 - Output buffer O: 1 page



- Time complexity
 - $c_{\text{read}} = p_R + \lceil p_R / M_R \rceil \cdot p_S$ (without zig-zag)
 - $c_{\texttt{read}} = p_R + \lceil p_R/M_R \rceil \cdot (p_S M_S) + M_S$ (with zig-zag)
- \Rightarrow there is no practical reason of having $M_S \ge 2$

Optimized configuration

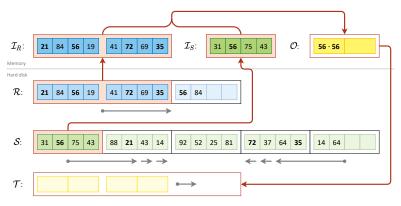
- System memory usage: $M_R + 1 + 1$ pages
 - Input buffer \mathcal{I}_R : M_R pages
 - Input buffer *I_S*: 1 page
 - Output buffer O: 1 page



- Time complexity
 - $c_{\text{read}} = p_R + \lceil p_R / M_R \rceil \cdot p_S$ (without zig-zag)
 - $c_{\text{read}} = p_R + \lceil p_R/M_R \rceil \cdot (p_S 1) + 1$ (with zig-zag)

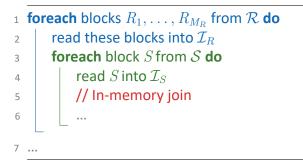
Optimized configuration ($M_R + 1 + 1$)

• Multiple pages are used just for the outer table



Algorithm

Optimized configuration ($M_R + 1 + 1$) with zig-zag



Specific Cases

Smaller table fits entirely within the memory

- I.e., $p_R \leq M_R$
 - $c_{\text{read}} = p_R + p_S$

B⁺-tree index exists in S on the attribute A that is <u>unique</u> in S

In case R is organized as a heap

• $c_{\text{read}} = p_R + n_R \cdot (I_{S.A} + 1)$

• In case R is sorted with respect to A

•
$$c_{\text{read}} = p_R + I_{S.A} + p_{S.A} + V_{R.A}$$

S is a hashed file over the joining attribute A that is unique in S

In case R is sorted with respect to A

•
$$c_{\text{read}} = p_R + V_{R.A} \cdot C_S$$

...

Sort-Merge Join

Sort-Merge Join

Sort-merge join algorithm (or just merge join)

- Inner joins based on value equality tests only
 - Without duplicates
 - Could be extended to support duplicates in one of the relations
- Suitable for tables with relatively similar sizes
 - Especially when they are already sorted
 - Or when the final result is expected to be sorted

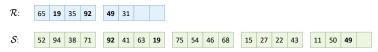
Idea

- Sorting phase
 - Both tables are externally sorted, one by one (if not yet)
- Joining phase
 - Pairs of items are joined directly during the merging process

Basic Approach

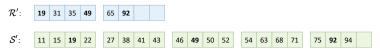
Sample input data

• Input tables \mathcal{R} and \mathcal{S}



Sorting phase

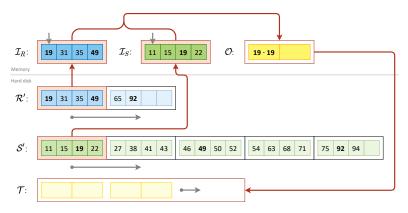
Resulting sorted tables



Basic Approach

Joining phase

- Blocks from the sorted tables are processed one by one
 - Internal pointers are used to iterate over the individual items



Algorithm

Joining phase

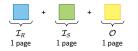
1 read blocks $\mathcal{R}'[1]$ to \mathcal{I}_R and $\mathcal{S}'[1]$ to \mathcal{I}_S while both \mathcal{I}_R and \mathcal{I}_S contain at least one item **do** 2 let r be the minimal item in \mathcal{I}_R and s minimal in \mathcal{I}_S 3 if value(r) = value(s) then 4 join r and s and put the result to \mathcal{O} 5 **if** \mathcal{O} is full **then** write \mathcal{O} to \mathcal{T} 6 remove r from \mathcal{I}_R and s from \mathcal{I}_S 7 **else** remove the lower one from r or s 8 if \mathcal{I}_R and / or \mathcal{I}_S are empty then 9 read the next block from \mathcal{R}' and / or \mathcal{S}' (if any) 10

11 if ${\mathcal O}$ is not empty then write ${\mathcal O}$ to ${\mathcal T}$

Observations

Joining phase

- System memory usage: 1 + 1 + 1 pages
 - Input buffer *I_R*: 1 page
 - Input buffer *I_S*: 1 page
 - Output buffer O: 1 page



Time complexity

- Sorting phase
- Joining phase
 - $c_{\text{read}} = p_R + p_S$

Improved Approach

2-pass integrated sort-merge join with priority queue

- Sorting phase (pass 1)
 - Tables are processed one by one
 - Priority queue is used to generate runs
 - Required memory: M + 1 + 1 pages
 - $M \approx \sqrt{p}$, where $p = \max(p_R, p_S)$
- Intermediate runs
 - Expected length of runs is $2M \approx 2\sqrt{p}$
 - Expected number of all runs is $p_S/2M + p_R/2M \approx \sqrt{p} \approx M$
- Joining phase (pass 2)
 - All runs from both the presorted tables are merged at once
 - Joined items are yielded directly without finishing the sorting
 - Required memory: M+1 pages

Improved Approach

Input tables

- Assumption
 - $M \approx \sqrt{5} \approx 3$

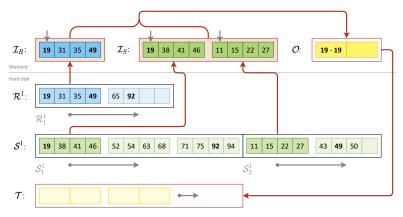
Sorting phase (pass 1)

• Generated tables \mathcal{R}^1 and \mathcal{S}^1 with presorted runs

Improved Approach

Joining phase (pass 2)

• All runs from both the tables \mathcal{R}^1 and \mathcal{S}^1 are merged at once



Algorithm

Improved approach: joining phase

1 r	ead $\mathcal{R}^1_x[1]$ from each run x in \mathcal{R}^1 to $\mathcal{I}_R[x]$, the same for \mathcal{S}^1
$_2~$ while both \mathcal{I}_R and \mathcal{I}_S contain at least one item do	
3	let r be the minimal item in \mathcal{I}_R and s minimal in \mathcal{I}_S
4	if $value(r) = value(s)$ then
5	join r and s and put the result to ${\cal O}$
6	if ${\mathcal O}$ is full then write ${\mathcal O}$ to ${\mathcal T}$
7	remove r from \mathcal{I}_R and s from \mathcal{I}_S
8	else remove the lower one from r or s
9	if the corresponding $\mathcal{I}_R[x]$ or $\mathcal{I}_S[y]$ are empty then
10	read the next block from \mathcal{R}^1_x or \mathcal{S}^1_y (if any)

11 if ${\mathcal O}$ is not empty then write ${\mathcal O}$ to ${\mathcal T}$

Observations

Improved approach

- System memory usage (joining phase): $M_R + M_S + 1$ pages
 - Input buffer \$\mathcal{I}_R\$: \$M_R\$ pages = number of runs in \$\mathcal{R}^1\$
 - Input buffer \mathcal{I}_S : M_S pages = number of runs in \mathcal{S}^1
 - Output buffer O: 1 page

•
$$M_R + M_S \approx M \approx \sqrt{p}$$

- The actual number of required pages may differ from ${\cal M}$

Overall time complexity

•
$$c = c_{\text{sort}} + c_{\text{join}} = 2(p_R + p_S) + (p_R + p_S) = 3(p_R + p_S)$$

Query Evaluation

Query Evaluation

Evaluation process

- SQL SELECT statement is parsed and transformed
- Query tree with (extended) RA operations is constructed

Query tree

- Leaf nodes correspond to the input tables
- Inner nodes correspond to the individual operations
 - Selection *σ*, projection *π*, ...
- Root node represents the entire query
- Nodes are evaluated from leaves towards the root

Query Evaluation

Query evaluation plan = query tree + algorithms

- Suitable algorithm needs to be chosen for each operation
 - Based on the context and available system memory
- Overall evaluation cost is calculated
 - Measured in a number of read / written blocks
 - Basic statistics for all the nodes need to be calculated, too

Sample Query

Database schema

- Movie (<u>id</u>, title, year, ...)
- Actor (movie, actor, character, ...)
 - FK: (movie) \subseteq Movie (id)

Sample query

Actors and characters they played in movies created in 2020

```
SQL:
```

SELECT title, actor, character FROM Movie JOIN Actor ON (id = movie) WHERE year = 2020

RA:

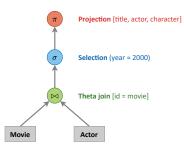
(Movie[id = movie]Actor)(year = 2000)
[title, actor, character]

Sample Query

Sample query (cont'd)

Actors and characters they played in movies created in 2020

```
• (Movie[id = movie]Actor)(year = 2000)
[title, actor, character]
```



Result Size Estimation

- Selection: $T = \sigma_{\varphi}(E)$
 - Tuple size
 - $s_T = s_E$
 - Blocking factor
 - $b_T = b_E$
 - Number of tuples
 - $n_T = 1$ for equality test over a unique attribute
 - $n_T = n_E \cdot (1/V_{E.A})$ the same over a **non-unique** attribute A
 - $n_T = n_E \cdot (k_2 k_1) / (max_{E.A} min_{E.A})$ for a range query over an attribute A between boundaries k_1 and k_2
 - $n_T = n_E \cdot (\prod_{i=1}^k R_i)$ for a **conjunction** of independent atomic conditions with **reduction factors** R_1, \ldots, R_k
 - •

Result Size Estimation

Projection:
$$T = \pi_{a_1,...,a_n}(E)$$

- Tuple size
 - s_T is derived from sizes of attributes a_1, \ldots, a_n
- Blocking factor
 - $b_T = \lfloor B/s_T \rfloor$
- Number of tuples for SQL without the DISTINCT modifier
 - $n_T = n_E$
- Number of tuples otherwise (i.e., without duplicates)
 - $n_T = n_E$ if attributes a_1, \ldots, a_n contain at least one key of E• ...

Result Size Estimation

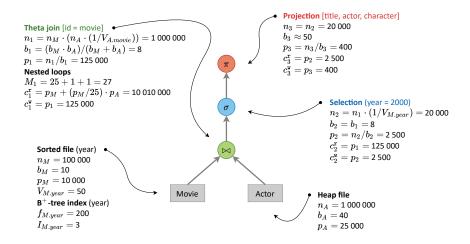
Inner join: $T = E_R \times E_S$ or $E_R \bowtie E_S$ or $E_R \bowtie_{\varphi} E_S$

- Tuple size
 - $s_T \approx s_R + s_S$
- Blocking factor

•
$$b_T \approx \left\lfloor \frac{B}{s_T} \right\rfloor \approx \left\lfloor \frac{B}{B/b_R + B/b_S} \right\rfloor \approx \left\lfloor \frac{b_R \cdot b_S}{b_R + b_S} \right\rfloor$$

- Number of tuples
 - $n_T = n_R \cdot (n_S/V_{S.A})$ for **equality test** over an attribute A in S
 - $n_T = n_R$ the same for a **unique attribute** A in S
 - $n_T = n_R \cdot n_S$ for cross join
 - ...

Sample Query: Plan #1



Evaluation Plan Cost

Overall evaluation cost

- Naive approach
 - Each operation reads all its inputs from hard disk
 - Each operation write its output to hard disk

Sample Plan #1

- M = 25 + 1 + 1 memory pages
- $c = [c_1^r + c_1^w] + [c_2^r + c_2^w] + [c_3^r]$
- $c = [p_M + (p_M/25) \cdot p_A + p_1] + [p_1 + p_2] + [p_2]$
- $c = [10\ 010\ 000\ +\ 125\ 000]\ +\ [125\ 000\ +\ 2\ 500]\ +\ [2\ 500]$
- $c = 10\ 265\ 000$

Evaluation Plan Cost

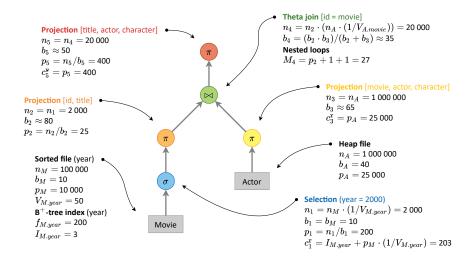
Overall evaluation cost (cont'd)

- Pipelining
 - Output of one operation si directly forwarded to the next one whenever possible
 - I.e., without hard disk usage
 - Unfortunately, not always possible...

Sample Plan #1 with pipelining

- M = 25 + 1 + 1 memory pages
- $c = [c_1^r + \varkappa] + [\varkappa + \varkappa] + [\varkappa]$
- $c = 10\ 010\ 000$

Sample Query: Plan #2



Evaluation Plan Cost

Sample Plan #2 with pipelining

- M = 25 + 1 + 1 memory pages
- $c = [c_1^r + \swarrow] + [\swarrow + \swarrow] + [c_3^r + \swarrow] + [\swarrow + \swarrow] + [\Join]$
- $c = [I_{M.year} + p_M \cdot (1/V_{M.year})] + [p_A]$
- $c = [203] + [25\ 000]$
- $c = 25\ 203$

Query Optimization

Objective

Finding the most optimal query evaluation plan

- It is not possible to consider all the possible plans, though
 - Because there are far too many of them
- Only suitable plans are selected based on heuristics

Strategies

- Algebraic optimizations
 - Equivalent transformations of query evaluation trees enabled by commutativity, associativity or other features of operations
 - E.g.: selections and projections as soon as possible
- Statistical optimizations
 - Estimation of result sizes based on histograms, ...
- Syntactical optimizations

Observations

False assumptions and simplifications

- Variable sizes of records
- Inner fragmentation within blocks
- Overflow areas within primary files
- Outer fragmentation of files
- Extent of available information
- Lazy maintenance of statistics
- Uneven distribution of data as well as queries
- Independence of conditions in reduction factors
- Impact of caching manager

Conclusion

Evaluation algorithms

- Sort
 - N-way external merge sort algorithm
 - Priority queue
- Join
 - Binary (block) nested loops algorithm
 - Zig-zag
 - Sort-merge join algorithm
 - 2-pass integrated sort-merge join with priority queue

Query evaluation and optimization

- Query evaluation plans
 - Overall cost, pipelining