Lecture Topic: Quantum Walks and Quantum Replacements of Monte Carlo Sampling

Quantum (Random) Walks

Introduction to Quantum Walks

- Quantum walks form a fundamental concept of quantum mechanics;
- Distinct perspective on random processes compared to their classical counterparts;
- Quantum walks, and algorithms that utilize them, have several important features...

Speedups

- Quantum walks often show quadratic speedups
- Sometimes show exponential speedups (e.g. the Hidden Flat Problem you can find on the lecture notes)
- Quantum walks form a model of universal (quantum) computation

Definitions

- Quantum walk: process on a graph $G=(V, E)$
- V is the set of vertices and E the set of edges of G
- Basis states $|x\rangle, x \in V$

In what follows, for simplicity, let $G=\mathbb{Z}$.

Our task is to find a "rule" as to evolve a quantum state labeled by its position to some other (neighboring) position.

Definitions

- Quantum walk: process on a graph $G=(V, E)$
- V is the set of vertices and E the set of edges of G
- Basis states $|x\rangle, x \in V$

In what follows, for simplicity, let $G=\mathbb{Z}$.

Our task is to find a "rule" as to evolve a quantum state labeled by its position to some other (neighboring) position.

The "naive" unitaries

Consider $U \in U(N)$ such that

$$
\begin{align*}
U: & \mathcal{H}_{G} \tag{1.1}
\end{align*} \rightarrow \mathcal{H}_{G},
$$

which conveys the information for the potential that $|x\rangle$
(1) moves left with some amplitude $a \in \mathbb{C}$,
(2) stays at the same place with amplitude $b \in \mathbb{C}$,
(3) moves right with amplitude $c \in \mathbb{C}$.

Consistency

The quantum walk process needs exhibit consistent behavior across all vertices:

That is, a, b and c should be independent of $x \in V$ (similarly to how the probabilities of moving left/right are independent of x in the classical random walk). Unfortunately, this definition does not work.

Consistency

The quantum walk process needs exhibit consistent behavior across all vertices:

That is, a, b and c should be independent of $x \in V$ (similarly to how the probabilities of moving left/right are independent of x in the classical random walk). Unfortunately, this definition does not work.

For the rest, we explicitly set $b=0$ (for simplicity).

The coin space

Solution: additional "coin" space: $|i, x\rangle$ for $i \in\{0,1\}, x \in \mathbb{Z}$, with Hilbert spaces $\mathcal{H}_{\mathrm{C}}, \mathcal{H}_{\mathrm{W}}$. At each step, we perform two unitary operations:
(1) A coin flip operation $C: \mathcal{H}_{\mathrm{C}} \rightarrow \mathcal{H}_{\mathrm{C}}$ which "puts" the walker in superposition, so it walks all possible paths simultaneously.
(2) Followed by a shift operation $S: \mathcal{H}_{\mathrm{W}} \rightarrow \mathcal{H}_{\mathrm{W}}$ the operator responsible for the actual walk on G.

$$
\begin{align*}
& C|i, x\rangle= \begin{cases}a|0, x\rangle+b|1, x\rangle & \text { if } i=0, \\
c|0, x\rangle+d|1, x\rangle & \text { if } i=1 .\end{cases} \tag{1.2}\\
& S|i, x\rangle= \begin{cases}|0, x+1\rangle & \text { if } i=0, \\
|1, x-1\rangle & \text { if } i=1 .\end{cases} \tag{1.3}
\end{align*}
$$

The coin space

Solution: additional "coin" space: $|i, x\rangle$ for $i \in\{0,1\}, x \in \mathbb{Z}$, with Hilbert spaces $\mathcal{H}_{\mathrm{C}}, \mathcal{H}_{\mathrm{W}}$. At each step, we perform two unitary operations:
(1) A coin flip operation $C: \mathcal{H}_{\mathrm{C}} \rightarrow \mathcal{H}_{\mathrm{C}}$ which "puts" the walker in superposition, so it walks all possible paths simultaneously.
(2) Followed by a shift operation $S: \mathcal{H}_{\mathrm{W}} \rightarrow \mathcal{H}_{\mathrm{W}}$ the operator responsible for the actual walk on G.

The coin space

Solution: additional "coin" space: $|i, x\rangle$ for $i \in\{0,1\}, x \in \mathbb{Z}$, with Hilbert spaces $\mathcal{H}_{\mathrm{C}}, \mathcal{H}_{\mathrm{W}}$. At each step, we perform two unitary operations:
(1) A coin flip operation $C: \mathcal{H}_{\mathrm{C}} \rightarrow \mathcal{H}_{\mathrm{C}}$ which "puts" the walker in superposition, so it walks all possible paths simultaneously.
(2) Followed by a shift operation $S: \mathcal{H}_{\mathrm{W}} \rightarrow \mathcal{H}_{\mathrm{W}}$ the operator responsible for the actual walk on G.

$$
\begin{align*}
& C|i, x\rangle= \begin{cases}a|0, x\rangle+b|1, x\rangle & \text { if } i=0, \\
c|0, x\rangle+d|1, x\rangle & \text { if } i=1 .\end{cases} \tag{1.2}\\
& S|i, x\rangle= \begin{cases}|0, x+1\rangle & \text { if } i=0, \\
|1, x-1\rangle & \text { if } i=1 .\end{cases} \tag{1.3}
\end{align*}
$$

Hadamard walker

If we choose for C the Hadamard matrix:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \tag{1.4}\\
1 & -1
\end{array}\right),
$$

we have a "Hadamard walker" while S can be explicitly described as follows:

$$
\begin{equation*}
S=\left(|0\rangle\langle 0| \otimes \sum_{x=-\infty}^{\infty}|x+1\rangle\langle x|\right)+\left(|1\rangle\langle 1| \otimes \sum_{x=-\infty}^{\infty}|x-1\rangle\langle x|\right) . \tag{1.5}
\end{equation*}
$$

The walker's unitary step and asymmetry

A step of a quantum walk amounts to the unitary $U=S C \in U(N)$.

Figure: Probability distribution of quantum walk, starting at $|+, 0\rangle$, after different numbers of steps.

Bias

The quantum walker's initial state is the product of the coin state and the position state.

The former state, $|i\rangle$, controls the direction in which the walker moves. Therefore, the choice of coin operator leads to vastly different constructive and destructive interference patterns.

This behavior is in stark contrast to a classical random walk, where the walker has equal probability of moving left or right at each step, and there is no preference or bias for either direction. The bias in a quantum walk is a unique characteristic of the underlying physics.

Example $G=\mathbb{Z}$

Example in a bounded subset of the integer line with $C=H$. It is common to assume that the walker starts at position $x=0$ with the coin state being the $|0\rangle$ or |1 \rangle state.

Figure: Beginning a quantum walk, after the coin operator has been applied, at $|+, 0\rangle$, by applying $C=H$ on $|0,0\rangle$, on the \mathbb{Z}-line.

Example $G=\mathbb{Z}$

Example in a bounded subset of the integer line with $C=H$. It is common to assume that the walker starts at position $x=0$ with the coin state being the $|0\rangle$ or $|1\rangle$ state.

Figure: Beginning a quantum walk, after the coin operator has been applied, at $|+, 0\rangle$, by applying $C=H$ on $|0,0\rangle$, on the \mathbb{Z}-line.

Example $G=\mathbb{Z}$

For ease of notation, we denote the r-th application of the quantum walk operator U by $U^{(r)}\left|\psi_{r-1}\right\rangle$.

The quantum walk amounts to the following set of operations:

- Select coin operator $C=H$
- Initialize the state (position of the walker): $|0\rangle=|0\rangle_{\mathrm{C}} \otimes|0\rangle_{\mathrm{W}}=|0,0\rangle$ (or
- for $r \in \mathbb{N}$ repeat $U^{r}|0\rangle$ as:
- Apply the coin operator: $C|0\rangle$
- Apply the shift operator: $S(C|0\rangle)$
- Measure $U^{T}|0\rangle$

Example $G=\mathbb{Z}$

For ease of notation, we denote the r-th application of the quantum walk operator U by $U^{(r)}\left|\psi_{r-1}\right\rangle$.

The quantum walk amounts to the following set of operations:

- Select coin operator $C=H$
- Initialize the state (position of the walker): $|0\rangle=|0\rangle_{\mathrm{C}} \otimes|0\rangle_{\mathrm{W}}=|0,0\rangle$ (or
- for $r \in \mathbb{N}$ repeat $U^{r}|\mathbf{0}\rangle$ as:
- Apply the coin operator: $C 0\rangle$
- Apply the shift operator: $S(C|0\rangle)$
- Measure $U^{r}|\mathbf{0}\rangle$

Example $G=\mathbb{Z}$

For ease of notation, we denote the r-th application of the quantum walk operator U by $U^{(r)}\left|\psi_{r-1}\right\rangle$.

The quantum walk amounts to the following set of operations:

- Select coin operator $C=H$
- Initialize the state (position of the walker): $|0\rangle=|0\rangle_{\mathrm{C}} \otimes|0\rangle_{\mathrm{W}}=|0,0\rangle$ (or $|1,0\rangle$)
- for $r \in \mathbb{N}$ repeat $U^{r}|0\rangle$ as:
- Apply the coin operator: - Apply the shift operator: $S(C|0\rangle)$
- Measure $U^{r}|0\rangle$

Example $G=\mathbb{Z}$

For ease of notation, we denote the r-th application of the quantum walk operator U by $U^{(r)}\left|\psi_{r-1}\right\rangle$.

The quantum walk amounts to the following set of operations:

- Select coin operator $C=H$
- Initialize the state (position of the walker): $|0\rangle=|0\rangle_{\mathrm{C}} \otimes|0\rangle_{\mathrm{W}}=|0,0\rangle$ (or $|1,0\rangle$)
- for $r \in \mathbb{N}$ repeat $U^{r}|\mathbf{0}\rangle$ as:
- Apply the coin operator: $C|\mathbf{0}\rangle$
- Apply the shift operator: $S(C|\mathbf{0}\rangle)$
- Measure $U^{r}|\mathbf{0}\rangle$

Example $G=\mathbb{Z}$

Therefore, the initial state is $|\mathbf{0}\rangle \equiv\left|\psi_{0}\right\rangle$ and we obtain

$$
\begin{align*}
\left|\psi_{1}\right\rangle & =\frac{|0,-1\rangle+|0,1\rangle}{\sqrt{2}} \tag{1.6}\\
\left|\psi_{2}\right\rangle & =\frac{|0,-2\rangle+|1,0\rangle+|0,0\rangle-|1,2\rangle}{2} \tag{1.7}\\
\left|\psi_{3}\right\rangle & =\frac{|1,-3\rangle-|0,-1\rangle+2(|0\rangle+|1\rangle)|1\rangle+|0,3\rangle}{2 \sqrt{2}} \tag{1.8}
\end{align*}
$$

This state is not symmetric around the origin and the probability distributions will not be centered at the origin. This is clear from Fig. 1.1. As a matter of fact the standard deviation of the walker, after r iterations of U is:

Example $G=\mathbb{Z}$

Therefore, the initial state is $|\mathbf{0}\rangle \equiv\left|\psi_{0}\right\rangle$ and we obtain

$$
\begin{align*}
\left|\psi_{1}\right\rangle & =\frac{|0,-1\rangle+|0,1\rangle}{\sqrt{2}} \tag{1.6}\\
\left|\psi_{2}\right\rangle & =\frac{|0,-2\rangle+|1,0\rangle+|0,0\rangle-|1,2\rangle}{2} \tag{1.7}\\
\left|\psi_{3}\right\rangle & =\frac{|1,-3\rangle-|0,-1\rangle+2(|0\rangle+|1\rangle)|1\rangle+|0,3\rangle}{2 \sqrt{2}} \tag{1.8}
\end{align*}
$$

This state is not symmetric around the origin and the probability distributions will not be centered at the origin. This is clear from Fig. 1.1.

Example $G=\mathbb{Z}$

Therefore, the initial state is $|\mathbf{0}\rangle \equiv\left|\psi_{0}\right\rangle$ and we obtain

$$
\begin{align*}
\left|\psi_{1}\right\rangle & =\frac{|0,-1\rangle+|0,1\rangle}{\sqrt{2}} \tag{1.6}\\
\left|\psi_{2}\right\rangle & =\frac{|0,-2\rangle+|1,0\rangle+|0,0\rangle-|1,2\rangle}{2} \tag{1.7}\\
\left|\psi_{3}\right\rangle & =\frac{|1,-3\rangle-|0,-1\rangle+2(|0\rangle+|1\rangle)|1\rangle+|0,3\rangle}{2 \sqrt{2}} \tag{1.8}
\end{align*}
$$

This state is not symmetric around the origin and the probability distributions will not be centered at the origin. This is clear from Fig. 1.1. As a matter of fact the standard deviation of the walker, after r iterations of U is:

$$
\begin{equation*}
\sigma(r) \approx 0.54 r \tag{1.9}
\end{equation*}
$$

Standard deviation

Figure: The standard deviation of a classical versus quantum walk as a function of the steps.

Balistic behavior of the quantum walker

Often we say that the quantum walkers showcase a ballistic bheaviour;
the rapid, linear spread of the probability distribution of the quantum walker's position over time, contrasting sharply with the slower, diffusive spreading observed in classical random walks.

Balistic behavior of the quantum walker

Often we say that the quantum walkers showcase a ballistic bheaviour;
the rapid, linear spread of the probability distribution of the quantum walker's position over time, contrasting sharply with the slower, diffusive spreading observed in classical random walks.

The walker's efficiency

Quantum Walks Graphs

Quantum Walk on a Complete Graph

Figure: An asymmetric non-complete graph $G=(8,10)$ and its symmetric completion $\bar{G}=K_{8}$.

Example $G=K_{4}$

Easy-to-work-with graph, the complete graph K_{4} with 4 vertices and 6 edges and perform such search.

Let us commence with a classical random walk on K_{4} wherein we are looking to "find" the marked vertex \#2 (but we do not know it). In the Fig. next we display the success probability after 1 and 2 steps.

Classical walk on $G=K_{4}$

Figure: Left: At step 1 the probability that the walker "lands" on vertex \#2 is $1 / 4$. Right: At step 2 the probability that the walker "lands" on vertex $\# 2$ is $1 / 2$. The loop in vertex \#2 denotes that this vertex is a trap: it allows us to know the walker landed on the marked vertex and the walker is not allowed to attain any other state.

Success Probability

Overall, the trend for the success probability continues, and we observe the behavior of the walker. For large N, the success probability of $1 / 2$ is reached after $\mathcal{O}(N)$ steps.

Quantum Grover Walks on K_{4}

We have to implement the coin and shift operators. Diagrammatically at step 0 we are back at the initial state of the classical walk. In total we have 12 amplitudes to consider;

Figure: Left: the state of the quantum walk is a superposition of the amplitudes $a_{i j} \in \mathbb{C}$, for all $i, j \in V\left(K_{4}\right)$. Once the oracle is applied the marked state's amplitudes obtain a negative sign (marked with blue and in analogy with Grover's operator).

Quantum Grover Walks on K_{4}

Initially, we have $a_{i j}=\frac{1}{\sqrt{12}}$ for all i, j.

Then, the coin flip operator C, which here is taken to be Grover's diffusion

 operator, amounts to marking the state we look for, assigning a negative sign to the corresponding amplitudes. The marking is done by assuming access to an oracle O (essentially the same oracle found in Grover's operator) that is able to perform this operation. Then, it changes the direction of adjacent red-blue pair vertices.
Quantum Grover Walks on K_{4}

Initially, we have $a_{i j}=\frac{1}{\sqrt{12}}$ for all i, j.

Then, the coin flip operator C, which here is taken to be Grover's diffusion operator, amounts to marking the state we look for, assigning a negative sign to the corresponding amplitudes. The marking is done by assuming access to an oracle O (essentially the same oracle found in Grover's operator) that is able to perform this operation. Then, it changes the direction of adjacent red-blue pair vertices.

Quantum Grover Walks on K_{4}

Then S reverses the amplitude values along their mean at each vertex. For example, the mean of the vertex $\# 1$ after application of C is

$$
\begin{equation*}
\mu_{12}=\frac{a_{21}+a_{13}+a_{14}}{3} \tag{1.10}
\end{equation*}
$$

Therefore, S amounts to a map $S: a_{i j} \mapsto a_{i j}^{\prime}=\mu_{12}-a_{i j}$, for the three pairs $\{21,13,14\}$. Of course, this is applied to all amplitudes for all vertices.

Quantum Grover Walks on K_{4}

Then S reverses the amplitude values along their mean at each vertex. For example, the mean of the vertex $\# 1$ after application of C is

$$
\begin{equation*}
\mu_{12}=\frac{a_{21}+a_{13}+a_{14}}{3} . \tag{1.10}
\end{equation*}
$$

Therefore, S amounts to a map $S: a_{i j} \mapsto a_{i j}^{\prime}=\mu_{12}-a_{i j}$, for the three pairs $\{21,13,14\}$. Of course, this is applied to all amplitudes for all vertices.

Quantum Grover Walks on K_{4}

Figure: Left: Coin operator is applied and reverses the relevant amplitudes. The shift operator reverses these amplitudes along their means.

Quantum Grover Walks on K_{4}

In the second step, we already get the amplitude asymmetry resulting from the oracle flipping the signs of the marked vertex followed by C and then S. As a result, one observes that:

$$
\begin{align*}
& \text { probability of success at step } 1=\frac{11}{108} \approx 0.1 \tag{1.11}\\
& \text { probability of success at step } 2=\frac{25}{36} \approx 0.7 \tag{1.12}\\
& \text { probability of success at step } 3=\ldots \tag{1.13}
\end{align*}
$$

Quantum Grover Walks on K_{4}

Overall, for a large number of vertices N, the probability that the walker lands on the marked vertex is $1 / 2$ is given after $\pi \sqrt{N}$ steps and therefore the run-time is $\mathcal{O}(\sqrt{N})$. This marks another example in which quantum walks portray a quadratic speedup over classical random walks.

Szegedy Walks

Szegedy Walks

Consider an undirected and unweighted graph G. Szegedy's quantum walk occurs on the edges of the bipartite double cover of the original graph.

If the original graph is G, then its bipartite double cover is the graph tensor product $G \times K_{2}$ which duplicates the vertices into two partite sets X and Y A vertex in X is connected to a vertex in Y if and only if they are connected in the original graph;

Szegedy Walks

Consider an undirected and unweighted graph G. Szegedy's quantum walk occurs on the edges of the bipartite double cover of the original graph.

If the original graph is G, then its bipartite double cover is the graph tensor product $G \times K_{2}$ which duplicates the vertices into two partite sets X and Y A vertex in X is connected to a vertex in Y if and only if they are connected in the original graph;

Szegedy Walks

Consider an undirected and unweighted graph G. Szegedy's quantum walk occurs on the edges of the bipartite double cover of the original graph.

If the original graph is G, then its bipartite double cover is the graph tensor product $G \times K_{2}$ which duplicates the vertices into two partite sets X and Y.

A vertex in X is connected to a vertex in Y if and only if they are connected in the original graph;

Szegedy Walks

Consider an undirected and unweighted graph G. Szegedy's quantum walk occurs on the edges of the bipartite double cover of the original graph.

If the original graph is G, then its bipartite double cover is the graph tensor product $G \times K_{2}$ which duplicates the vertices into two partite sets X and Y.

A vertex in X is connected to a vertex in Y if and only if they are connected in the original graph;

Szegedy Walks

Figure: Left: A graph G. Right: The bipartite double cover of G. The double cover contains double the number of edges.

Szegedy Walks

The Hilbert space of a Szegedy walk: $\mathbb{C}^{2|E|}$.

Let us denote a walker on the edge connecting $x \in X$ with $y \in Y$ as $|x, y\rangle$. Then the computational basis is:
where $x \sim y$ denotes that the vertices x and y are adjacent.

Szegedy Walks

The Hilbert space of a Szegedy walk: $\mathbb{C}^{2|E|}$.

Let us denote a walker on the edge connecting $x \in X$ with $y \in Y$ as $|x, y\rangle$. the computational basis is:
where $x \sim y$ denotes that the vertices x and y are adjacent.

Szegedy Walks

The Hilbert space of a Szegedy walk: $\mathbb{C}^{2|E|}$.

Let us denote a walker on the edge connecting $x \in X$ with $y \in Y$ as $|x, y\rangle$. Then the computational basis is:

$$
\begin{equation*}
|x, y\rangle, \quad x \in X, y \in Y, x \sim y \tag{1.14}
\end{equation*}
$$

where $x \sim y$ denotes that the vertices x and y are adjacent.

Szegedy Walks

Szegedy's walk is defined by repeated applications of the unitary

$$
\begin{equation*}
U=R_{2} R_{1}, \tag{1.15}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{1}=2 \sum_{x \in X}\left|\phi_{x}\right\rangle\left\langle\phi_{x}\right|-\mathbf{1} \tag{1.16}\\
& R_{2}=2 \sum_{y \in Y}\left|\psi_{y}\right\rangle\left\langle\psi_{y}\right|-\mathbf{1}, \tag{1.17}
\end{align*}
$$

are reflection operators and

$$
\begin{align*}
\left|\phi_{x}\right\rangle & =\frac{1}{\sqrt{\operatorname{deg}(x)}} \sum_{y \sim x}|x, y\rangle \tag{1.18}\\
\left|\psi_{y}\right\rangle & =\frac{1}{\sqrt{\operatorname{deg}(y)}} \sum_{x \sim y}|x, y\rangle \tag{1.19}
\end{align*}
$$

Szegedy Walks

Before:

- $\operatorname{deg}(x)$ is the degree of vertex x
- $y \sim x$ denotes the sums over the neighbors of x

Observe that $\left|\phi_{x}\right\rangle$ is the equal superposition of edges incident to $x \in X$, and $\left|\psi_{y}\right\rangle$ is the equal superposition of edges incident to $y \in Y$

Here, there is an equivalent of the "inversion about the mean" operation of Grover's algorithm, which we also saw previously in the context of walks over K_{4}. The reflection R_{1} goes through each vertex in X and reflects the amplitude of its incident edges about their average amplitude, and R_{2} similarly does this for the vertices in Y

Szegedy Walks

Before:

- $\operatorname{deg}(x)$ is the degree of vertex x
- $y \sim x$ denotes the sums over the neighbors of x

Observe that $\left|\phi_{x}\right\rangle$ is the equal superposition of edges incident to $x \in X$, and $\left|\psi_{y}\right\rangle$ is the equal superposition of edges incident to $y \in Y$.

Here, there is an equivalent of the "inversion about the mean" operation of Grover's algorithm, which we also saw previously in the context of walks over K_{4} The reflection R_{1} goes through each vertex in X and reflects the amplitude of its incident edges about their average amplitude, and R_{2} similarly does this for the vertices in Y

Szegedy Walks

Before:

- $\operatorname{deg}(x)$ is the degree of vertex x
- $y \sim x$ denotes the sums over the neighbors of x

Observe that $\left|\phi_{x}\right\rangle$ is the equal superposition of edges incident to $x \in X$, and $\left|\psi_{y}\right\rangle$ is the equal superposition of edges incident to $y \in Y$.

Here, there is an equivalent of the "inversion about the mean" operation of Grover's algorithm, which we also saw previously in the context of walks over K_{4}. The reflection R_{1} goes through each vertex in X and reflects the amplitude of its incident edges about their average amplitude, and R_{2} similarly does this for the vertices in Y.

Szegedy Walks

Classically: search for a marked vertex on G amounts to randomly walks until a marked vertex is found (then walker freezes)

Quantumly: Szegedy's quantum walk searches by quantizing this random walk with absorbing vertices and the resulting bipartite double cover. Search is performed by repeatedly applying the unitary

$$
\begin{equation*}
\widetilde{U}=\widetilde{R}_{2} \widetilde{R}_{1}, \tag{1.20}
\end{equation*}
$$

where the tilde distinguishes in that we are searching for absorbing vertices. At unmarked vertices they act as $R_{j}=R_{j}$ simply by inverting the amplitudes of the edges around their average at each vertex. At the marked vertices, similarly to the K_{4} case, they act by flipping the signs of the amplitudes of all incident edges. A similar search can be performed using Grover's diffusion operator.

Szegedy Walks

Classically: search for a marked vertex on G amounts to randomly walks until a marked vertex is found (then walker freezes)

Quantumly: Szegedy's quantum walk searches by quantizing this random walk with absorbing vertices and the resulting bipartite double cover. Search is performed by repeatedly applying the unitary

$$
\begin{equation*}
\tilde{U}=\widetilde{R}_{2} \widetilde{R}_{1}, \tag{1.20}
\end{equation*}
$$

where the tilde distinguishes in that we are searching for absorbing vertices.
unmarked vertices they act as $R_{j}=R_{j}$ simply by inverting the amplitudes of the
edges around their average at each vertex. At the marked vertices, similarly to the
K_{4} case, they act by flipping the signs of the amplitudes of all incident edges. A
similar search can be performed using Grover's diffusion operator.

Szegedy Walks

Classically: search for a marked vertex on G amounts to randomly walks until a marked vertex is found (then walker freezes)

Quantumly: Szegedy's quantum walk searches by quantizing this random walk with absorbing vertices and the resulting bipartite double cover. Search is performed by repeatedly applying the unitary

$$
\begin{equation*}
\widetilde{U}=\widetilde{R}_{2} \widetilde{R}_{1}, \tag{1.20}
\end{equation*}
$$

where the tilde distinguishes in that we are searching for absorbing vertices. At unmarked vertices they act as $\widetilde{R}_{j}=R_{j}$ simply by inverting the amplitudes of the edges around their average at each vertex.
K_{4} case, they act by flipping the signs of the amplitudes of all incident edges. A
similar search can be performed using Grover's diffusion operator.

Szegedy Walks

Classically: search for a marked vertex on G amounts to randomly walks until a marked vertex is found (then walker freezes)

Quantumly: Szegedy's quantum walk searches by quantizing this random walk with absorbing vertices and the resulting bipartite double cover. Search is performed by repeatedly applying the unitary

$$
\begin{equation*}
\widetilde{U}=\widetilde{R}_{2} \widetilde{R}_{1}, \tag{1.20}
\end{equation*}
$$

where the tilde distinguishes in that we are searching for absorbing vertices. At unmarked vertices they act as $\widetilde{R}_{j}=R_{j}$ simply by inverting the amplitudes of the edges around their average at each vertex. At the marked vertices, similarly to the K_{4} case, they act by flipping the signs of the amplitudes of all incident edges. A similar search can be performed using Grover's diffusion operator.

Szegedy Walks

Figure: The marked state corresponds to vertex $\# 2$ which is an absorbing vertex: $\left\langle 2_{Y} \mid 2_{X}\right\rangle=\left\langle 2_{X} \mid 2_{Y}\right\rangle=0$.

Continuous-time Quantum Walks

Continuous-time Quantum Walks

Continuous-time random walk but quantum..

Will allow us later to understand the universality of quantum walks.

Continuous-time Quantum Walks

Continuous-time random walk on a graph $G=(V, E)$ with adjacency matrix A defined as:

$$
A_{i, j}= \begin{cases}1, & (i, j) \in E \tag{1.21}\\ 0, & (i, j) \notin E\end{cases}
$$

for every pair $i, j \in V$. In this definition we do not allow self-loops therefore the diagonal of A is zero.

Continuous-time Quantum Walks

Continuous-time random walk on a graph $G=(V, E)$ with adjacency matrix A defined as:

$$
A_{i, j}= \begin{cases}1, & (i, j) \in E \tag{1.21}\\ 0, & (i, j) \notin E\end{cases}
$$

for every pair $i, j \in V$. In this definition we do not allow self-loops therefore the diagonal of A is zero.

Continuous-time Quantum Walks

There is another matrix associated with G that is of equal importance, the Laplacian of G defined as:

$$
L_{i, j}= \begin{cases}-\operatorname{deg}(i), & i=j \tag{1.22}\\ 1, & (i, j) \in E \\ 0, & \text { otherwise }\end{cases}
$$

$\operatorname{deg}(i)$ denotes the degree of vertex i

Continuous-time Quantum Walks

There is another matrix associated with G that is of equal importance, the Laplacian of G defined as:

$$
L_{i, j}= \begin{cases}-\operatorname{deg}(i), & i=j \tag{1.22}\\ 1, & (i, j) \in E \\ 0, & \text { otherwise }\end{cases}
$$

$\operatorname{deg}(i)$ denotes the degree of vertex i.

Continuous-time Quantum Walks

Let $p_{i}(t)$ denote the probability associated with the vertex i at time t. continuous-time random walk on G is defined as the solution of the differential equation

This can be viewed as a discrete analog of the diffusion equation.

Continuous-time Quantum Walks

Let $p_{i}(t)$ denote the probability associated with the vertex i at time t. The continuous-time random walk on G is defined as the solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} p_{i}(t)=\sum_{j \in V} L_{j k} p_{j}(t) \tag{1.23}
\end{equation*}
$$

This can be viewed as a discrete analog of the diffusion equation.

Continuous-time Quantum Walks

Observe that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{j \in V} p_{j}(t)=\sum_{j, k \in V} L_{j k} p_{k}(t)=0 \tag{1.24}
\end{equation*}
$$

You have to prove it ;)
An initially normalized distribution remains normalized; The solution of the differential equation can be given in closed form as:

$$
p(t)=e^{L t} p(0)
$$

Continuous-time Quantum Walks

Observe that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{j \in V} p_{j}(t)=\sum_{j, k \in V} L_{j k} p_{k}(t)=0 \tag{1.24}
\end{equation*}
$$

You have to prove it ;)
An initially normalized distribution remains normalized; The solution of the differential equation can be given in closed form as:

$$
p(t)=e^{L t} p(0) .
$$

Continuous-time Quantum Walks

Observe that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{j \in V} p_{j}(t)=\sum_{j, k \in V} L_{j k} p_{k}(t)=0 \tag{1.24}
\end{equation*}
$$

You have to prove it ;)

An initially normalized distribution remains normalized; The solution of the differential equation can be given in closed form as:

$$
\begin{equation*}
p(t)=e^{L t} p(0) \tag{1.25}
\end{equation*}
$$

Continuous-time quantum walks

Eq. (1.24) is very similar to the Schrödinger equation

$$
\begin{equation*}
\imath \frac{\mathrm{d}}{\mathrm{~d} t}|\psi\rangle=H|\psi\rangle, \tag{1.26}
\end{equation*}
$$

Instead of probabilities of Eq. (1.24) we can insert the amplitudes $q_{j}(t)=\langle j \mid \psi(t)\rangle$ where $\{|j\rangle: j \in V\}$ is an orthonormal basis \mathcal{H}. Then, we obtain the equation:

where the Hamiltonian is given by the Laplacian L.

Continuous-time quantum walks

Eq. (1.24) is very similar to the Schrödinger equation

$$
\begin{equation*}
\imath \frac{\mathrm{d}}{\mathrm{~d} t}|\psi\rangle=H|\psi\rangle, \tag{1.26}
\end{equation*}
$$

Instead of probabilities of Eq. (1.24) we can insert the amplitudes
$q_{j}(t)=\langle j \mid \psi(t)\rangle$ where $\{|j\rangle: j \in V\}$ is an orthonormal basis \mathcal{H}. Then, we obtain the equation:

$$
\begin{equation*}
\imath \frac{\mathrm{d}}{\mathrm{~d} t} q_{j}(t)=\sum_{k \in V} L_{j k} q_{k}(t) \tag{1.27}
\end{equation*}
$$

where the Hamiltonian is given by the Laplacian L.

Continuous-time quantum walks

The solution of reads:

$$
\begin{equation*}
U(t)=e^{-\imath H t}=e^{-\imath L t} \tag{1.28}
\end{equation*}
$$

and the evolution of an initial state from $t=0$ to some arbitrary time t is given by:

$$
\begin{equation*}
|\psi(t)\rangle=U(t)|\psi(0)\rangle . \tag{1.29}
\end{equation*}
$$

Exponential speedups using Quantum Walks

(see notes)

Universality of Quantum Qalks

Universality of Quantum Walks

- Quantum walks form a universal model of computation [childs; 0806.1972].
- We will show this using the concept of the universal computation graph.
- Universality: any problem solved by a gate-based quantum computer also solved by a quantum walk.
- In principle, any quantum algorithm we have seen previously can be recast as a quantum walk algorithm.

Universality of Quantum Walks

- Quantum walks form a universal model of computation [childs; 0806.1972].
- We will show this using the concept of the universal computation graph.
- Universality: any problem solved by a gate-based quantum computer also solved bv a duantum walk.
- In principle, any quantum algorithm we have seen previously can be recast as a quantum walk algorithm.

Universality of Quantum Walks

- Quantum walks form a universal model of computation [Childs; 8806.1972].
- We will show this using the concept of the universal computation graph.
- Universality: any problem solved by a gate-based quantum computer also solved by a quantum walk.
- In principle, any quantum algorithm we have seen previously can be recast as a quantum walk algorithm.

Universality of Quantum Walks

- Quantum walks form a universal model of computation [childs; 0806.1972].
- We will show this using the concept of the universal computation graph.
- Universality: any problem solved by a gate-based quantum computer also solved by a quantum walk.
- In principle, any quantum algorithm we have seen previously can be recast as a quantum walk algorithm.

Universality of Quantum Walks

Consider a (continuous) walker on $G=\mathbb{Z}$ where the basis states are $|x\rangle$ with Hamiltonian $H_{G}=A_{G}$.

By solving the eigenvalue equation we find that the eigenstates of H_{G} are the momentum states $|k\rangle$; the states that satisfy
with $\left\langle k \mid k^{\prime}\right\rangle \sim \delta\left(k-k^{\prime}\right)$. Intuition: used to understand how scattering (particle interactions) works in quantum mechanics (and quantum rield theory)

Universality of Quantum Walks

Consider a (continuous) walker on $G=\mathbb{Z}$ where the basis states are $|x\rangle$ with Hamiltonian $H_{G}=A_{G}$.

By solving the eigenvalue equation we find that the eigenstates of H_{G} are the momentum states $|k\rangle$; the states that satisfy

$$
\begin{equation*}
\langle x \mid k\rangle=e^{-\imath k x} \tag{1.30}
\end{equation*}
$$

with $\left\langle k \mid k^{\prime}\right\rangle \sim \delta\left(k-k^{\prime}\right)$. Intuition:

Universality of Quantum Walks

Consider a (continuous) walker on $G=\mathbb{Z}$ where the basis states are $|x\rangle$ with Hamiltonian $H_{G}=A_{G}$.

By solving the eigenvalue equation we find that the eigenstates of H_{G} are the momentum states $|k\rangle$; the states that satisfy

$$
\begin{equation*}
\langle x \mid k\rangle=e^{-\imath k x} \tag{1.30}
\end{equation*}
$$

with $\left\langle k \mid k^{\prime}\right\rangle \sim \delta\left(k-k^{\prime}\right)$. Intuition: $|k\rangle$ are the momentum eigenstates which are used to understand how scattering (particle interactions) works in quantum mechanics (and quantum field theory).

Universality of Quantum Walks

In momentum space, with orthogonal states $\left|\phi_{k}\right\rangle \equiv|k\rangle$, we know that

$$
\begin{equation*}
|k\rangle=\sum_{x \in \mathbb{Z}} e^{-\imath k x}|x\rangle \tag{1.31}
\end{equation*}
$$

These momentum states however (as is usual with Fourier bases) are not normalizable (think as maps $E(G) \rightarrow \mathbb{C}$).

You can easily show (homework) that
$H|k\rangle=2 \cos (k)|k\rangle$.

Universality of Quantum Walks

In momentum space, with orthogonal states $\left|\phi_{k}\right\rangle \equiv|k\rangle$, we know that

$$
\begin{equation*}
|k\rangle=\sum_{x \in \mathbb{Z}} e^{-\imath k x}|x\rangle . \tag{1.31}
\end{equation*}
$$

These momentum states however (as is usual with Fourier bases) are not normalizable (think as maps $E(G) \rightarrow \mathbb{C}$).

You can easily show (homework) that

$$
\begin{equation*}
H|k\rangle=2 \cos (k)|k\rangle . \tag{1.32}
\end{equation*}
$$

Universality of Quantum Walks

Next, let us consider a finite graph G and create out of it an infinite graph with adjacency matrix H by attaching semi-infinite lines to M of its vertices.

Figure: Universal computation graph.

Universality of Quantum Walks

The states living on the j-th line are labeled $|x, j\rangle$.
$|x, j\rangle$ corresponds to the state where x is allowed to walk along the j-th line. The eigenstates of H_{G} for each line j must be a superposition of the form of Eq. (1.31) with momenta k taking any of the values:

- $\pm k$ with eigenvalues $2 \cos (k)$,
- $k= \pm i k$ and eigenvalue $2 \cosh (k)$,
- $k= \pm i \kappa+\pi$ and eigenvalue $-2 \cosh (\kappa)$. Here $\kappa \in \mathbb{R}_{\geq 0}$.

Universality of Quantum Walks

The states living on the j-th line are labeled $|x, j\rangle$.
$|x, j\rangle$ corresponds to the state where x is allowed to walk along the j-th line. The eigenstates of H_{G} for each line j must be a superposition of the form of Eq. (1.31) with momenta k taking any of the values:

- $\pm k$ with eigenvalues $2 \cos (k)$,
- $k= \pm i \kappa$ and eigenvalue $2 \cosh (\kappa)$,
- $k= \pm i \kappa+\pi$ and eigenvalue $-2 \cosh (\kappa)$. Here $\kappa \in \mathbb{R} \geq 0$

Universality of Quantum Walks

The states living on the j-th line are labeled $|x, j\rangle$.
$|x, j\rangle$ corresponds to the state where x is allowed to walk along the j-th line. The eigenstates of H_{G} for each line j must be a superposition of the form of Eq. (1.31) with momenta k taking any of the values:

- $\pm k$ with eigenvalues $2 \cos (k)$,
- $k= \pm i \kappa$ and eigenvalue $2 \cosh (\kappa)$,
- $k= \pm i \kappa+\pi$ and eigenvalue $-2 \cosh (\kappa)$.

Universality of Quantum Walks

The states living on the j-th line are labeled $|x, j\rangle$.
$|x, j\rangle$ corresponds to the state where x is allowed to walk along the j-th line. The eigenstates of H_{G} for each line j must be a superposition of the form of Eq. (1.31) with momenta k taking any of the values:

- $\pm k$ with eigenvalues $2 \cos (k)$,
- $k= \pm i \kappa$ and eigenvalue $2 \cosh (\kappa)$,
- $k= \pm i \kappa+\pi$ and eigenvalue $-2 \cosh (\kappa)$. Here $\kappa \in \mathbb{R}_{\geq 0}$.

Universality of Quantum Walks

For numerous reasons, Childs truncates $|k\rangle$ such that it has support over a finite number of vertices. Denote the truncated state supported over L vertices as

$$
\begin{equation*}
|k\rangle_{L}:=\frac{1}{\sqrt{L}} \sum_{x=1}^{L} e^{-\imath k x}|x\rangle \tag{1.33}
\end{equation*}
$$

which propagate with speed $2 \sin (k)$.

Note that

Universality of Quantum Walks

For numerous reasons, Childs truncates $|k\rangle$ such that it has support over a finite number of vertices. Denote the truncated state supported over L vertices as

$$
\begin{equation*}
|k\rangle_{L}:=\frac{1}{\sqrt{L}} \sum_{x=1}^{L} e^{-\imath k x}|x\rangle \tag{1.33}
\end{equation*}
$$

which propagate with speed $2 \sin (k)$.

Note that

$$
\lim _{L \rightarrow \infty}|k\rangle_{L}=|k\rangle
$$

Universality of Quantum Walks

In the physics literature, such states are called wave packets and the sign of the exponential denotes the direction of the wave;

Figure: A wave packet supported over 3 vertices moving coming from the (far) left.

The infinite line in the figure above becomes a universal computation graph by inserting in some vertex a finite graph G.

Universality of Quantum Walks

In the physics literature, such states are called wave packets and the sign of the exponential denotes the direction of the wave;

Figure: A wave packet supported over 3 vertices moving coming from the (far) left.

The infinite line in the figure above becomes a universal computation graph by inserting in some vertex a finite graph G.

Universality of Quantum Walks

As seen in Fig. 1.13. In principle, one can prepare a wave packet as the one with momentum k and let it propagate.

Figure: Inserting a finite graph G into the integer line, yields a one-dimensional universal computation graph.
G serves as a quantum obstacle in the propagation of the wave packet.

Universality of Quantum Walks

This amounts to a dynamic scattering process. Let us denote this incoming (to G) wave packet as

$$
\begin{array}{ll}
|w(k)\rangle_{\mathrm{L}} & \text { if the wave packet comes from the left, } \\
|w(k)\rangle_{\mathrm{R}} & \text { if the wave packet comes from the right. }
\end{array}
$$

The dynamics correspond to the following equations

where R_{L} is a reflection coefficient and T_{L} is the transfer coefficient. Similarly, we can write down the equations for right-coming wave packets.

Universality of Quantum Walks

This amounts to a dynamic scattering process. Let us denote this incoming (to G) wave packet as

$$
\begin{array}{ll}
|w(k)\rangle_{\mathrm{L}} & \text { if the wave packet comes from the left, } \\
|w(k)\rangle_{\mathrm{R}} & \text { if the wave packet comes from the right. } \tag{1.35}
\end{array}
$$

The dynamics correspond to the following equations:

$$
\begin{align*}
\left\langle x_{\mathrm{L}} \mid w_{\mathrm{L}}(k)\right\rangle & =e^{-\imath k x}+R_{\mathrm{L}}(k) e^{\imath k x} \tag{1.36}\\
\left\langle x_{\mathrm{R}} \mid w_{\mathrm{L}}(k)\right\rangle & =T_{\mathrm{L}}(k) e^{\imath k x} \tag{1.37}\\
H|w(k)\rangle & =2 \cos (k)|w(k)\rangle, \tag{1.38}
\end{align*}
$$

where R_{L} is a reflection coefficient and T_{L} is the transfer coefficient.

Universality of Quantum Walks

This amounts to a dynamic scattering process. Let us denote this incoming (to G) wave packet as

$$
\begin{array}{ll}
|w(k)\rangle_{\mathrm{L}} & \text { if the wave packet comes from the left, } \\
|w(k)\rangle_{\mathrm{R}} & \text { if the wave packet comes from the right. } \tag{1.35}
\end{array}
$$

The dynamics correspond to the following equations:

$$
\begin{align*}
\left\langle x_{\mathrm{L}} \mid w_{\mathrm{L}}(k)\right\rangle & =e^{-\imath k x}+R_{\mathrm{L}}(k) e^{\imath k x} \tag{1.36}\\
\left\langle x_{\mathrm{R}} \mid w_{\mathrm{L}}(k)\right\rangle & =T_{\mathrm{L}}(k) e^{\imath k x} \tag{1.37}\\
H|w(k)\rangle & =2 \cos (k)|w(k)\rangle, \tag{1.38}
\end{align*}
$$

where R_{L} is a reflection coefficient and T_{L} is the transfer coefficient. Similarly, we can write down the equations for right-coming wave packets.

Universality of Quantum Walks

Figure: Part of the wave packet will be reflected and part will be transfered through G. The coefficients $R_{\mathrm{L}, \mathrm{R}}, T_{\mathrm{L}, \mathrm{R}}$ are called reflection and transfer coefficients.

Universality of Quantum Walks

For every scattering process, as the one above, there is a scattering matrix S. In this case,

$$
S=\left(\begin{array}{ll}
R_{\mathrm{L}} & T_{\mathrm{L}} \tag{1.39}\\
R_{\mathrm{R}} & T_{\mathrm{R}}
\end{array}\right),
$$

and it is an element of $U(2)$.

More generally, an arbitrary number of semi-infinite lines can be considered as in Fig. 1.11 with an arbitrary graph G. If there are N semi-infinite lines, then

Universality of Quantum Walks

For every scattering process, as the one above, there is a scattering matrix S. In this case,

$$
S=\left(\begin{array}{ll}
R_{\mathrm{L}} & T_{\mathrm{L}} \tag{1.39}\\
R_{\mathrm{R}} & T_{\mathrm{R}}
\end{array}\right),
$$

and it is an element of $U(2)$.

More generally, an arbitrary number of semi-infinite lines can be considered as in Fig. 1.11 with an arbitrary graph G. If there are N semi-infinite lines, then $S \in U(N)$.

Universality of Quantum Walks

It is possible to encode a qubit state by considering two universal computation diagrams in one dimension:

Figure: A single qubit can be represented by two infinite lines and momentum $\pi / 4$. The qubit is in the $|0\rangle$ state if the wavepacket propagates in the top line and in the $|1\rangle$ state if at the bottom.

Universality of Quantum Walks

As before, we can insert a graph G with 4 semi-infinite lines as in Fig. 1.16.

Figure: A two-qubit unitary U can be encoded through G to be implemented as a quantum walk.

Universality of Quantum Walks

A unitary is implemented by inserting a graph G such that its corresponding S-matrix has the structure

$$
S=\left(\begin{array}{cc}
0 & U^{\dagger} \tag{1.40}\\
U & 0
\end{array}\right)
$$

where $U \in U(2)$. Therefore, a 2×2 unitary U is implemented by the scattering process of quantum walkers, through a graph G that encodes it.

Universality of Quantum Walks

A unitary is implemented by inserting a graph G such that its corresponding S-matrix has the structure

$$
S=\left(\begin{array}{cc}
0 & U^{\dagger} \tag{1.40}\\
U & 0
\end{array}\right)
$$

where $U \in U(2)$. Therefore, a 2×2 unitary U is implemented by the scattering process of quantum walkers, through a graph G that encodes it.

Universality of Quantum Walks

Childs showed it is possible to implement the unitaries

$$
U_{\pi / 4}=\left(\begin{array}{cc}
e^{-\imath \pi / 4} & 0 \tag{1.41}\\
0 & 1
\end{array}\right), \quad U_{\mathrm{b}}=-\frac{\imath}{\sqrt{2}}\left(\begin{array}{cc}
1 & -\imath \\
-\imath & 1
\end{array}\right)
$$

which form a universal gate set for one-qubit operations; up to a certain precision ε, any single-qubit gate can be implemented by a string of these two unitaries.

Figure: The graphs encoding $U_{\pi / 4}$ and U_{b}.

Universality of Quantum Walks

This construction was further generalized to n-qubit gates proving that quantum walks form a universal model of computation.

Figure: The graph G obtained by attaching N semi-infinite paths to a graph G.

Universality of Quantum Walks

By considering a finite graph G and attaching $N / 2=n$ pairs of semi-infinite paths, we are able to encode n qubits. Eventually, it is possible to encode any n-qubit unitary to a graph G to obtain a quantum walk equivalent of any arbitrary circuit.

Figure: If G is chosen to encode a desired unitary $U \in U(n)$ the circuit can be implemented by a quantum walk.

Universality of Quantum Walks

You might be worried that for 2^{n}-dimensional states we require 2×2^{n} semi-infinite lines.

Universality of Quantum Walks

You might be worried that for 2^{n}-dimensional states we require 2×2^{n} semi-infinite lines. Thus a graph G of size $\mathcal{O}\left(2^{n}\right)$.

Worry not since [Childs, Gosset, Webb 2013] showed that by considering multiparticle quantum walk one requires a $\operatorname{poly}(n)$ sized graph G !

However the construction of 2-qubit gates (and above) is quite more involved since, as you can imagine, it requires scattering of 2 particle states or higher. We leave this as an exercise.

Universality of Quantum Walks

You might be worried that for 2^{n}-dimensional states we require 2×2^{n} semi-infinite lines. Thus a graph G of size $\mathcal{O}\left(2^{n}\right)$.

Worry not since [Childs, Gosset, Webb 2013] showed that by considering multiparticle quantum walk one requires a $\operatorname{poly}(n)$ sized graph G !

However the construction of 2-qubit gates (and above) is quite more involved since, as you can imagine, it requires scattering of 2 particle states or higher.
leave this as an exercise.

Universality of Quantum Walks

You might be worried that for 2^{n}-dimensional states we require 2×2^{n} semi-infinite lines. Thus a graph G of size $\mathcal{O}\left(2^{n}\right)$.

Worry not since [Childs, Gosset, Webb 2013] showed that by considering multiparticle quantum walk one requires a $\operatorname{poly}(n)$ sized graph G !

However the construction of 2-qubit gates (and above) is quite more involved since, as you can imagine, it requires scattering of 2 particle states or higher. We leave this as an exercise.

Quantum Walks

Quantum Science and Technology

Renato Portugal

Quantum Walks and Search Algorithms

