Lecture Topic: Applications in Financial Services

Practical aspects of quantum computing

Today, we want to make a few remarks on the practical aspects of use of what we have seen in the financial services industry. Therein, one needs to deal with many more vendors (i.e., salesmen) than universities (i.e., researchers). Let us start with a few remarks on the practical aspects of quantum annealers, and the vendors thereof.

D-Wave Ocean

While there are several quantum annealers across the world in academic environments, the most well-known vendor is D-Wave Systems.

```
You can experiment with pip install dwave-ocean-sdk, D-Wave's
quantum annealing emulator.
Other vendors that develop superconducting quantum annealers are Qilimanjaro
and Avaqus.
```


D-Wave Ocean

While there are several quantum annealers across the world in academic environments, the most well-known vendor is D-Wave Systems.

You can experiment with pip install dwave-ocean-sdk, D-Wave's quantum annealing emulator.
Other vendors that develop superconducting quantum annealers are Qilimanjaro and Avaqus.

D-Wave Ocean

While there are several quantum annealers across the world in academic environments, the most well-known vendor is D-Wave Systems.
You can experiment with pip install dwave-ocean-sdk, D-Wave's quantum annealing emulator.
Other vendors that develop superconducting quantum annealers are Qilimanjaro and Avaqus.

Analogue Quantum Computation

Recall, QA is a type of analog quantum computation based on the concept of adiabatic quantum computation (AQC).

As such, it is possible to devise systems that perform AQC with stoquastic Hamiltonians but are not necessarily based on superconducting qubits.

Such examples include Pascal and QuFra that use arrays of Rydberg atoms which are highly excited atoms with a large distance between the electron and the nucleus.

Analogue Quantum Computation

Recall, QA is a type of analog quantum computation based on the concept of adiabatic quantum computation (AQC).

As such, it is possible to devise systems that perform AQC with stoquastic Hamiltonians but are not necessarily based on superconducting qubits.

Such examples include Pasqal and QuEra that use arrays of Rydberg atoms which are highly excited atoms with a large distance between the electron and the nucleus.

Analogue Quantum Computation

Recall, QA is a type of analog quantum computation based on the concept of adiabatic quantum computation (AQC).

As such, it is possible to devise systems that perform AQC with stoquastic Hamiltonians but are not necessarily based on superconducting qubits.

Such examples include Pasqal and QuEra that use arrays of Rydberg atoms which are highly excited atoms with a large distance between the electron and the nucleus.

Hybrid Solvers

Several companies manufacture specialized classical hardware (e.g., based on FPGAs) that simulate quantum annealing, for example Fujitsu and Hitachi.

Tensor Networks

Finally, let's mention another approach to solve a number of interesting optimization problems, again via a QUBO reformulation, called tensor networks NVIDIA is a major player.

Essentially, tensor networks clasically "mimic" the behavior of a large number of weakly entangled quantum states.

Tensor Networks

Finally, let's mention another approach to solve a number of interesting optimization problems, again via a QUBO reformulation, called tensor networks NVIDIA is a major player.

Essentially, tensor networks clasically "mimic" the behavior of a large number of weakly entangled quantum states.

tensor diagrams

Tensor Networks

Finally, let's mention another approach to solve a number of interesting optimization problems, again via a QUBO reformulation, called tensor networks.

NVIDIA is a major player

Essentially, tensor networks clasically "mimic" the behavior of a large number of weakly entangled quantum states.

tensor diagrams

Tensor Networks

Finally, let's mention another approach to solve a number of interesting optimization problems, again via a QUBO reformulation, called tensor networks. NVIDIA is a major player.

Essentially, tensor networks clasically "mimic" the behavior of a large number of weakly entangled quantum states.

tensor diagrams

Focus: D-Wave

D-Wave being the first company to file for a patent.
D-Wave gained a lot of notice once multi-qubit quantum tunneling effects were observed experimental and showed the computational potential it may have. Their most advanced is the 5,760-qubit Advantage machine with which the following study was performed:
nature

Explore content $\checkmark \quad$ About the journal $\checkmark \quad$ Publish with us \checkmark
nature > articles > article

Article | Published: 19 April 2023
Quantum critical dynamics in a 5,000-qubit programmable spin glass

Focus: D-Wave

D-Wave being the first company to file for a patent.
D-Wave gained a lot of notice once multi-qubit quantum tunneling effects were observed experimental and showed the computational potential it may have.

Their most advanced is the 5,760 -qubit Advantage machine with which the following study was performed:

nature

Explore content $\vee \quad$ About the journal $\vee \quad$ Publish with us \vee
nature > articles > article

Article | Published: 19 April 2023
Quantum critical dynamics in a 5,000-qubit programmable spin glass

Focus: D-Wave

D-Wave being the first company to file for a patent.
D-Wave gained a lot of notice once multi-qubit quantum tunneling effects were observed experimental and showed the computational potential it may have.

Their most advanced is the 5,760 -qubit Advantage machine with which the following study was performed:

nature

Explore content \vee About the journal \vee Publish with us \vee
nature > articles > article

Article | Published: 19 April 2023
Quantum critical dynamics in a 5,000-qubit programmable spin glass

Measuring Performance

It is commong to use a metric known as Time-To-Solution (TTS) when performing benchmarking studies.

Data collected from multiple runs of the QA are used to compute the probability of finding a ground state solution for the given configuration of (adjustable) parameters. This probability is:

$$
p_{\mathrm{TTS}}:=\frac{\# \text { of ground state solutions }}{\# \text { of total QA runs }}
$$

Measuring Performance

It is commong to use a metric known as Time-To-Solution (TTS) when performing benchmarking studies.

Data collected from multiple runs of the QA are used to compute the probability of finding a ground state solution for the given configuration of (adjustable) parameters. This probability is:

Measuring Performance

It is commong to use a metric known as Time-To-Solution (TTS) when performing benchmarking studies.

Data collected from multiple runs of the QA are used to compute the probability of finding a ground state solution for the given configuration of (adjustable) parameters. This probability is:

$$
\begin{equation*}
p_{\text {TTS }}:=\frac{\# \text { of ground state solutions }}{\# \text { of total QA runs }} . \tag{1.1}
\end{equation*}
$$

TTS proper

The TTS proper is defined as the expected time to obtain the ground state solution at least once with success probability α and it is computed as:

Here $t_{\text {run }}$ is the annealing time for a single run of the QA and $\alpha=0.99$ by default. Scheduling is a NP-Hard nroblem and you should exnect that TTS scales exponentially with the size of the input N.

TTS proper

The TTS proper is defined as the expected time to obtain the ground state solution at least once with success probability α and it is computed as:

$$
\begin{equation*}
\mathrm{TTS}=t_{\mathrm{run}} \frac{1-\log \alpha}{1-\log p_{\mathrm{TTS}}} \tag{1.2}
\end{equation*}
$$

Here $t_{\text {run }}$ is the annealing time for a single run of the QA and $\alpha=0.99$ by default. Scheduling is a NP-Hard problem and you should expect that TTS scales exponentially with the size of the input N.

TTS proper

The TTS proper is defined as the expected time to obtain the ground state solution at least once with success probability α and it is computed as:

$$
\begin{equation*}
\mathrm{TTS}=t_{\mathrm{run}} \frac{1-\log \alpha}{1-\log p_{\mathrm{TTS}}} \tag{1.2}
\end{equation*}
$$

Here $t_{\text {run }}$ is the annealing time for a single run of the QA and $\alpha=0.99$ by default. Scheduling is a NP-Hard problem and you should expect that TTS scales exponentially with the size of the input N.

The TTS proper is defined as the expected time to obtain the ground state solution at least once with success probability α and it is computed as:

$$
\begin{equation*}
\mathrm{TTS}=t_{\mathrm{run}} \frac{1-\log \alpha}{1-\log p_{\mathrm{TTS}}} \tag{1.2}
\end{equation*}
$$

Here $t_{\text {run }}$ is the annealing time for a single run of the QA and $\alpha=0.99$ by default.
Scheduling is a NP-Hard problem and you should expect that TTS scales exponentially with the size of the input N.

TTS proper

Note that, in practice, when measuring TTS several aspects need to be considered (many of which are true for other models of quantum computation too), mainly:

- problem preparation time
- annealing time
- readout time
- repetition

TTS proper

Note that, in practice, when measuring TTS several aspects need to be considered (many of which are true for other models of quantum computation too), mainly:

- problem preparation time
- annealing time
- readout time
- repetition

Exponential scaling

Quantum optimizers such as QA (are hoped to) solve NP-Hard combinatorial optimization problems in time proportional to $\exp (\beta N \gamma)$ as $N \rightarrow \infty$, for positive coefficients β (scaling exponent) and γ.

Reasonable to expect (since scheduling problems are NP-Hard) TTS should scale exponentially with the problem size N in the asymptotic limit for $\gamma=1$.

The value of the β parameter that turns out to fit the experimental results $\mathrm{TTS}=T_{0} \exp \beta N$, for some constant $T_{0}>0$, ranges between 1.01 and 1.17 depending on the D-Wave machine.

Exponential scaling

Quantum optimizers such as QA (are hoped to) solve NP-Hard combinatorial optimization problems in time proportional to $\exp (\beta N \gamma)$ as $N \rightarrow \infty$, for positive coefficients β (scaling exponent) and γ.

Reasonable to expect (since scheduling problems are NP-Hard) TTS should scale exponentially with the problem size N in the asymptotic limit for $\gamma=1$.

> The value of the β parameter that turns out to fit the experimental results $\mathrm{TTS}=T_{0} \exp \beta N$, for some constant $T_{0}>0$, ranges between 1.01 and 1.17 depending on the D-Wave machine.

Exponential scaling

Quantum optimizers such as QA (are hoped to) solve NP-Hard combinatorial optimization problems in time proportional to $\exp (\beta N \gamma)$ as $N \rightarrow \infty$, for positive coefficients β (scaling exponent) and γ.

Reasonable to expect (since scheduling problems are NP-Hard) TTS should scale exponentially with the problem size N in the asymptotic limit for $\gamma=1$.

The value of the β parameter that turns out to fit the experimental results $\mathrm{TTS}=T_{0} \exp \beta N$, for some constant $T_{0}>0$, ranges between 1.01 and 1.17 depending on the D-Wave machine.

It's a tough job

3 attachments (70 KB)

This Message Is From an External Sender
This message came from outside your organisation. The content \& any attachments need to be treated with care and attention.

Hi Georgios,

Please see attached for some initial results of the 100 variable QKP problem instances. We solved the instances with varying level of annealing times and also 2 different chain strengths (the default and one found through a dwave utility). Unfortunately, no clear pattern can be seen so far with the increased connectivity or longer anneal times. Neither appears to close the gap with available heuristics through either Gurobi or simulated annealers.

What can we hope from QA?

The conclusion is that the experimental results align with the expectation that QA (and similar quantum optimization techniques) may be able to solve NP-Hard combinatorial optimization problems with an exponential time complexity.

The fact that β is close to 1 might indicate a near-linear scaling with problem size, which is promising for solving large optimization problems.

However, even with this seemingly near-linear scaling the time and resources required can still be large for sufficiently big problem sizes.

What can we hope from QA?

The conclusion is that the experimental results align with the expectation that QA (and similar quantum optimization techniques) may be able to solve NP-Hard combinatorial optimization problems with an exponential time complexity.

The fact that β is close to 1 might indicate a near-linear scaling with problem size, which is promising for solving large optimization problems.

However, even with this seemingly near-linear scaling, the time and resources required can still be large for sufficiently big problem sizes.

What can we hope from QA?

The conclusion is that the experimental results align with the expectation that QA (and similar quantum optimization techniques) may be able to solve NP-Hard combinatorial optimization problems with an exponential time complexity.

The fact that β is close to 1 might indicate a near-linear scaling with problem size, which is promising for solving large optimization problems.
However, even with this seemingly near-linear scaling, the time and resources required can still be large for sufficiently big problem sizes.

More on QUBO

In this section we aim to discuss a few more QUBO formulations of interesting hard problems.

Graph Partitioning

Consider an undirected graph $G=(V, E)$. The task is to partition the set of vertices V into two subsets of equal size $N / 2$, such that the number of edges connecting the two subsets is minimized.

Graph Partitioning

We can directly assign spin variables represented by the graph vertices where $x=+1$ values mean the blue class and $x=-1$ values mean the orange class.

The problem is solved by considering the following cost function:

$$
\begin{equation*}
L(x)=L_{A}(x)+L_{B}(x) \tag{2.1}
\end{equation*}
$$

Graph Partitioning

We can directly assign spin variables represented by the graph vertices where $x=+1$ values mean the blue class and $x=-1$ values mean the orange class.

The problem is solved by considering the following cost function:

$$
\begin{equation*}
L(x)=L_{A}(x)+L_{B}(x) \tag{2.1}
\end{equation*}
$$

Graph Partitioning

$$
\begin{equation*}
L_{A}(x)=\alpha \sum_{i=1}^{N} x_{i}, \tag{2.2}
\end{equation*}
$$

This term provides a penalty term if the number of elements in the blue set is not equal to the number of elements in the orange set.

Graph Partitioning

$$
\begin{equation*}
L_{B}(x)=\beta \sum_{(u, v) \in E(G)} \frac{1-x_{u} x_{v}}{2} \tag{2.3}
\end{equation*}
$$

This term provides a penalty each time an edge connects vertices from different subsets.

- $\beta>0$: wish to minimize the number of edges between the two subsets
- $\beta<0$: must be small enough so that it is never favorable to violate the other constraint L_{A}

Graph Partitioning

$$
\begin{equation*}
L_{B}(x)=\beta \sum_{(u, v) \in E(G)} \frac{1-x_{u} x_{v}}{2} \tag{2.3}
\end{equation*}
$$

This term provides a penalty each time an edge connects vertices from different subsets.

- $\beta>0$: wish to minimize the number of edges between the two subsets
- $\beta<0$: must be small enough so that it is never favorable to violate the other constraint L_{A}

Binary Integer Linear Programming

Consider the binary vector $x=\left(x_{1} \ldots x_{N}\right) \in\{0,1\}^{N}$. Binary integer linear programming (BILP) amounts to the following problem:

Binary Integer Linear Programming

Consider the binary vector $x=\left(x_{1} \ldots x_{N}\right) \in\{0,1\}^{N}$. Binary integer linear programming (BILP) amounts to the following problem:

$$
\begin{array}{rl}
\max _{x \in\{0,1\}^{N}} & c x \\
\text { s.t. } & A x=b \\
& A \in \mathbb{R}^{M \times N} \tag{2.4}\\
& b \in \mathbb{R}^{M}
\end{array}
$$

Binary Integer Linear Programming

A variety of problems can be formed as BILPs (for example in the context of banking revenue maximization subject to regulating constraints).

The cost function $L(x)$ corresponding to the QUBO formulation is

$$
L(x)=L_{A}(x)+L_{B}(x),
$$

Binary Integer Linear Programming

A variety of problems can be formed as BILPs (for example in the context of banking revenue maximization subject to regulating constraints).

The cost function $L(x)$ corresponding to the QUBO formulation is

$$
\begin{equation*}
L(x)=L_{A}(x)+L_{B}(x), \tag{2.5}
\end{equation*}
$$

Binary Integer Linear Programming

$$
\begin{equation*}
L_{A}(x)=\alpha \sum_{j=1}^{m}\left(b_{j}-\sum_{i=1}^{N} A_{i j} x_{i}\right)^{2} \tag{2.6}
\end{equation*}
$$

α is a constant.

Note that $L_{A}(x)=0$ enforces the constraint $A x=b$. When this is not met, we get an overall penalty to the objective function.

Binary Integer Linear Programming

$$
\begin{equation*}
L_{A}(x)=\alpha \sum_{j=1}^{m}\left(b_{j}-\sum_{i=1}^{N} A_{i j} x_{i}\right)^{2} \tag{2.6}
\end{equation*}
$$

α is a constant.
Note that $L_{A}(x)=0$ enforces the constraint $A x=b$. When this is not met, we get an overall penalty to the objective function.

Binary Integer Linear Programming

$$
\begin{equation*}
L_{B}(x)=-\beta \sum_{i=1}^{N} c_{i} x_{i} \tag{2.7}
\end{equation*}
$$

for $\beta<\alpha$ another constant.
onstants α and β are tuning parameter that determines the relative importance of maximizing the objective function compared to satisfying the constraints.

The condition $\beta<\alpha$ ensures that the constraints take precedence over the objective function, which is usually the case in constrained optimization problems.

Binary Integer Linear Programming

$$
\begin{equation*}
L_{B}(x)=-\beta \sum_{i=1}^{N} c_{i} x_{i} \tag{2.7}
\end{equation*}
$$

for $\beta<\alpha$ another constant.
onstants α and β are tuning parameter that determines the relative importance of maximizing the objective function compared to satisfying the constraints.

The condition $\beta<\alpha$ ensures that the constraints take precedence over the
objective function, which is usually the case in constrained optimization problems.

Binary Integer Linear Programming

$$
\begin{equation*}
L_{B}(x)=-\beta \sum_{i=1}^{N} c_{i} x_{i}, \tag{2.7}
\end{equation*}
$$

for $\beta<\alpha$ another constant.
onstants α and β are tuning parameter that determines the relative importance of maximizing the objective function compared to satisfying the constraints.

The condition $\beta<\alpha$ ensures that the constraints take precedence over the objective function, which is usually the case in constrained optimization problems.

Binary Integer Linear Programming

$$
\begin{equation*}
L_{B}(x)=-\beta \sum_{i=1}^{N} c_{i} x_{i} \tag{2.7}
\end{equation*}
$$

for $\beta<\alpha$ another constant.
onstants α and β are tuning parameter that determines the relative importance of maximizing the objective function compared to satisfying the constraints.

The condition $\beta<\alpha$ ensures that the constraints take precedence over the objective function, which is usually the case in constrained optimization problems.

The reason for the minus sign is?

Portfolio optimization

One of the fundamental problems in quantitative finance is portfolio optimization which is part of modern portfolio theory (MPT).
A typical portfolio optimization is formulated as follows:

- N number of assets (things you can buy or sell in a market)
- μ_{i} expected return of asset $i \in[N]$
- $\sigma_{i j}$ the covariance between the returns of asset i and asset j
- R the target portfolio return

Portfolio optimization

One of the fundamental problems in quantitative finance is portfolio optimization which is part of modern portfolio theory (MPT).
A typical portfolio optimization is formulated as follows:

- N number of assets (things you can buy or sell in a market)
- μ_{i} expected return of asset $i \in[N]$
- $\sigma_{i j}$ the covariance between the returns of asset i and asset j
- R the target portfolio return

Portfolio optimization

One of the fundamental problems in quantitative finance is portfolio optimization which is part of modern portfolio theory (MPT).
A typical portfolio optimization is formulated as follows:

- N number of assets (things you can buy or sell in a market)
- μ_{i} expected return of asset $i \in[N]$
- $\sigma_{i j}$ the covariance between the returns of asset i and asset j
- R the target portfolio return

Portfolio optimization

The decision variables are the weights $w \in \mathbb{R}^{N}$.
The standard approach here is the Markowitz mean-variance approach. This amounts to the following quadratic program:

Portfolio optimization

The decision variables are the weights $w \in \mathbb{R}^{N}$.
The standard approach here is the Markowitz mean-variance approach. amounts to the following quadratic program:

Portfolio optimization

The decision variables are the weights $w \in \mathbb{R}^{N}$.
The standard approach here is the Markowitz mean-variance approach. This amounts to the following quadratic program:

$$
\begin{align*}
\min _{w \in \mathbb{R}^{N}} & \sum_{i, j=1}^{N} w_{i} w_{j} \sigma_{i j} \\
\text { s.t. } & \sum_{i=1}^{N} w_{i}=1 \tag{2.8}\\
& \sum_{i=1}^{N} w_{i} \mu_{i}=R
\end{align*}
$$

Portfolio optimization

Intuition

Problem amounts: construction of an optimal portfolio from the set of all possible assets with known characteristics such as their returns, volatilities, and pairwise correlations.

> Expect to select $M \leq N$ assets from the set of available N assets that should be the best possible choice according to the criteria set by the constraints.

Portfolio optimization

Intuition

Problem amounts: construction of an optimal portfolio from the set of all possible assets with known characteristics such as their returns, volatilities, and pairwise correlations.

Expect to select $M \leq N$ assets from the set of available N assets that should be the best possible choice according to the criteria set by the constraints.

Portfolio optimization

Consider the case where where weights w are discrete; this situation starts resembling like a NP-Complete problem.

The previous problem can be mapped to a QUBO suitable for QA. This is done as follows.

We define the QUBO objective as:

Portfolio optimization

Consider the case where where weights w are discrete; this situation starts resembling like a NP-Complete problem.

The previous problem can be mapped to a QUBO suitable for QA. This is done as follows.

We define the QUBO objective as:

(2.9)

Portfolio optimization

Consider the case where where weights w are discrete; this situation starts resembling like a NP-Complete problem.

The previous problem can be mapped to a QUBO suitable for QA. This is done as follows.

We define the QUBO objective as:

Portfolio optimization

Consider the case where where weights w are discrete; this situation starts resembling like a NP-Complete problem.

The previous problem can be mapped to a QUBO suitable for QA. This is done as follows.

We define the QUBO objective as:

$$
\begin{equation*}
L(x)=\sum_{i=1}^{N} a_{i} x_{i}+\sum_{i=1}^{N} \sum_{j=i+1}^{N} b_{i j} x_{i} x_{j} . \tag{2.9}
\end{equation*}
$$

Portfolio optimization

In this context

$$
x_{i}= \begin{cases}1 & \text { means asset } i \text { is selected } \tag{2.10}\\ 0 & \text { means asset } i \text { is not selected }\end{cases}
$$

Then, given the N asset set $x=\left\{x_{1}, \ldots, x_{N}\right\}$ find the binary configuration that minimizes the $L(x)$ subject to the cardinality constraint that can be added via a penalty term $L_{\text {pen }}(x)$.

Portfolio optimization

In this context

$$
x_{i}= \begin{cases}1 & \text { means asset } i \text { is selected } \tag{2.10}\\ 0 & \text { means asset } i \text { is not selected }\end{cases}
$$

Then, given the N asset set $x=\left\{x_{1}, \ldots, x_{N}\right\}$ find the binary configuration that minimizes the $L(x)$ subject to the cardinality constraint that can be added via a penalty term $L_{\text {pen }}(x)$.

Portfolio optimization

Specifically, the requirement that $\sum_{i=1}^{N} x_{i}=M$ is encoded via:

$$
\begin{equation*}
L_{\mathrm{pen}}(x)=P\left(M-\sum_{i=1}^{N} x_{i}\right)^{2} \tag{2.11}
\end{equation*}
$$

Coefficients a_{i} reflect the asset attractiveness as a standalone

Assets with large expected risk-adjusted returns rewarded with negative values for a_{i}; assets with small expected risk-adjusted returns penalised with positive values of a_{i}.
$b_{i j}$: pairwise diversification penalties (if positive) and rewards (if negative) For all

Portfolio optimization

Specifically, the requirement that $\sum_{i=1}^{N} x_{i}=M$ is encoded via:

$$
\begin{equation*}
L_{\mathrm{pen}}(x)=P\left(M-\sum_{i=1}^{N} x_{i}\right)^{2} \tag{2.11}
\end{equation*}
$$

Coefficients a_{i} reflect the asset attractiveness as a standalone (think user defined hyperparameter).

Assets with large expected risk-adjusted returns rewarded with negative values for a_{i}; assets with small expected risk-adjusted returns penalised with positive values of a_{i}.
pairwise diversification penalties (if positive) and rewards (if negative) For

Portfolio optimization

Specifically, the requirement that $\sum_{i=1}^{N} x_{i}=M$ is encoded via:

$$
\begin{equation*}
L_{\mathrm{pen}}(x)=P\left(M-\sum_{i=1}^{N} x_{i}\right)^{2} \tag{2.11}
\end{equation*}
$$

Coefficients a_{i} reflect the asset attractiveness as a standalone (think user defined hyperparameter).

Assets with large expected risk-adjusted returns rewarded with negative values for a_{i}; assets with small expected risk-adjusted returns penalised with positive values
$b_{i j}$: pairwise diversification penalties (if positive) and rewards (if negative) For all

Portfolio optimization

Specifically, the requirement that $\sum_{i=1}^{N} x_{i}=M$ is encoded via:

$$
\begin{equation*}
L_{\mathrm{pen}}(x)=P\left(M-\sum_{i=1}^{N} x_{i}\right)^{2} \tag{2.11}
\end{equation*}
$$

Coefficients a_{i} reflect the asset attractiveness as a standalone (think user defined hyperparameter).

Assets with large expected risk-adjusted returns rewarded with negative values for a_{i}; assets with small expected risk-adjusted returns penalised with positive values of a_{i}.
pairwise diversification penalties (if positive) and rewards (if negative)

Portfolio optimization

Specifically, the requirement that $\sum_{i=1}^{N} x_{i}=M$ is encoded via:

$$
\begin{equation*}
L_{\mathrm{pen}}(x)=P\left(M-\sum_{i=1}^{N} x_{i}\right)^{2} \tag{2.11}
\end{equation*}
$$

Coefficients a_{i} reflect the asset attractiveness as a standalone (think user defined hyperparameter).

Assets with large expected risk-adjusted returns rewarded with negative values for a_{i}; assets with small expected risk-adjusted returns penalised with positive values of a_{i}.
$b_{i j}$: pairwise diversification penalties (if positive) and rewards (if negative)

Portfolio optimization

Specifically, the requirement that $\sum_{i=1}^{N} x_{i}=M$ is encoded via:

$$
\begin{equation*}
L_{\mathrm{pen}}(x)=P\left(M-\sum_{i=1}^{N} x_{i}\right)^{2} \tag{2.11}
\end{equation*}
$$

Coefficients a_{i} reflect the asset attractiveness as a standalone (think user defined hyperparameter).

Assets with large expected risk-adjusted returns rewarded with negative values for a_{i}; assets with small expected risk-adjusted returns penalised with positive values of a_{i}.
$b_{i j}$: pairwise diversification penalties (if positive) and rewards (if negative) For all purposes of this course, assume a_{i} and $b_{i j}$ as given.

Portfolio optimization

The total QUBO to be solved is:

$$
\begin{equation*}
\min _{x \in\{0,1\}^{N}} L_{\text {total }}(x):=L(x)+L_{\text {pen }}(x) \tag{2.12}
\end{equation*}
$$

Portfolio optimization

Intuition

The minimization of this QUBO optimizes for the risk-adjusted returns by using the so-called Sharpe ratio: The ratio describes how much excess return you receive for the extra volatility you endure for holding a riskier asset.

This is computed as $\left(r-r_{0}\right) / \sigma$ where r is the expected (annualised) asset return, r_{0} is the applicable risk-free interest rate and σ is the asset volatility.

Expected returns can be either estimated as the historical returns or derived independently using e.g. Monte Carlo simulations.

Portfolio optimization

Intuition

The minimization of this QUBO optimizes for the risk-adjusted returns by using the so-called Sharpe ratio: The ratio describes how much excess return you receive for the extra volatility you endure for holding a riskier asset.

This is computed as $\left(r-r_{0}\right) / \sigma$ where r is the expected (annualised) asset return, r_{0} is the applicable risk-free interest rate and σ is the asset volatility.

> Expected returns can be either estimated as the historical returns or derived independently using e.g. Monte Carlo simulations.

Portfolio optimization

Intuition

The minimization of this QUBO optimizes for the risk-adjusted returns by using the so-called Sharpe ratio: The ratio describes how much excess return you receive for the extra volatility you endure for holding a riskier asset.

This is computed as $\left(r-r_{0}\right) / \sigma$ where r is the expected (annualised) asset return, r_{0} is the applicable risk-free interest rate and σ is the asset volatility.

Expected returns can be either estimated as the historical returns or derived independently using e.g. Monte Carlo simulations.

QBoost

Let us discuss how QBoost is used in the context of Machine Learning (ML). First, let us set up some notation:

QBoost

Let us discuss how QBoost is used in the context of Machine Learning (ML). First, let us set up some notation:

Object	Definition
$x_{t} \in \mathbb{R}^{N}$	vector of N features
$y_{t} \in\{0,1\}$	binary classification label
$\left\{x_{t}, y_{t}\right\}_{t \in[M]}$	training set
$c_{i}\left(x_{t}\right)= \pm \frac{1}{N}$	value of weak classifier i on event t
$q:=\left(q_{1}, \ldots, q_{N}\right)$	vector of binary weights associated with each weak classifier

QBoost

The classification error for sample t is given by the square error

$$
\begin{equation*}
\left(\sum_{i=1}^{N} c_{i}\left(x_{t}\right) q_{i}-y_{t}\right)^{2} \tag{3.1}
\end{equation*}
$$

QBoost

The classification error for sample t is given by the square error

$$
\begin{equation*}
\left(\sum_{i=1}^{N} c_{i}\left(x_{t}\right) q_{i}-y_{t}\right)^{2} \tag{3.1}
\end{equation*}
$$

QBoost

The total cost function to minimize is the sum of squared errors across the training data:

$$
\begin{equation*}
L(s)=\sum_{t=1}^{M}\left(\sum_{i=1}^{N} c_{i}\left(x_{t}\right) s_{i}-y_{t}\right)^{2} \tag{3.2}
\end{equation*}
$$

Expanding yields a term y_{t}^{2} that does not depend on s and does not influence the minimization of L (can be absorbed as a constant energy shift).

QBoost

The total cost function to minimize is the sum of squared errors across the training data:

$$
\begin{equation*}
L(s)=\sum_{t=1}^{M}\left(\sum_{i=1}^{N} c_{i}\left(x_{t}\right) s_{i}-y_{t}\right)^{2} \tag{3.2}
\end{equation*}
$$

Expanding yields a term y_{t}^{2} that does not depend on s and does not influence the minimization of L (can be absorbed as a constant energy shift).

QBoost

Overfitting can be done by adding a penalty $\lambda>0$. The objective to minimize in the QBoost agorithm is:

$$
\begin{align*}
\tilde{L}(s) & =\sum_{t=1}^{M}\left(\sum_{i=1}^{N} c_{i}\left(x_{t}\right) q_{i} \sum_{j=1}^{N} c_{j}\left(x_{t}\right) s_{j}-2 y_{t} \sum_{i=1}^{N} c_{i}\left(x_{t}\right) s_{i}\right)+\lambda \sum_{i=1}^{N} s_{i} \tag{3.3}\\
& =\sum_{i=1}^{N} \sum_{j=1}^{N} c_{i j} q_{i} q_{j}+\sum_{i=1}^{N}\left(\lambda-2 C_{i}\right) s_{i}, \tag{3.4}
\end{align*}
$$

QBoost

Overfitting can be done by adding a penalty $\lambda>0$. The objective to minimize in the QBoost agorithm is:

$$
\begin{align*}
\tilde{L}(s) & =\sum_{t=1}^{M}\left(\sum_{i=1}^{N} c_{i}\left(x_{t}\right) q_{i} \sum_{j=1}^{N} c_{j}\left(x_{t}\right) s_{j}-2 y_{t} \sum_{i=1}^{N} c_{i}\left(x_{t}\right) s_{i}\right)+\lambda \sum_{i=1}^{N} s_{i} \tag{3.3}\\
& =\sum_{i=1}^{N} \sum_{j=1}^{N} c_{i j} q_{i} q_{j}+\sum_{i=1}^{N}\left(\lambda-2 C_{i}\right) s_{i}, \tag{3.4}
\end{align*}
$$

QBoost

$$
C_{i j}:=\sum_{t=1}^{M} c_{i}\left(x_{t}\right) c_{j}\left(x_{t}\right), \quad C_{i}:=\sum_{i=1}^{M} c_{i}\left(x_{t}\right) y_{t}
$$

QBoost

$$
C_{i j}:=\sum_{t=1}^{M} c_{i}\left(x_{t}\right) c_{j}\left(x_{t}\right), \quad C_{i}:=\sum_{i=1}^{M} c_{i}\left(x_{t}\right) y_{t}
$$

Remark: the penalty term added here is analogous to LASSO regression method with L_{1} penalty. Note that ridge regression with L_{2} penalty could be chosen instead.

QBoost

Next, we need to map the problem to an Ising model. Consider σ to be spin variables by defining
$\sigma=2 s-1$

The Ising Hamiltonian is then written as:

QBoost

Next, we need to map the problem to an Ising model. Consider σ to be spin variables by defining

$$
\begin{equation*}
\sigma=2 s-1 \tag{3.5}
\end{equation*}
$$

The Ising Hamiltonian is then written as:

QBoost

Next, we need to map the problem to an Ising model. Consider σ to be spin variables by defining

$$
\begin{equation*}
\sigma=2 s-1 \tag{3.5}
\end{equation*}
$$

The Ising Hamiltonian is then written as:

$$
\begin{equation*}
H=\frac{1}{4} \sum_{i, j=1}^{N} C_{i j} \sigma_{i} \sigma_{j}+\frac{1}{2} \sum_{i, j=1}^{N} C_{i} \sigma_{i}+\sum_{i=1}^{N}\left(\lambda^{\prime}-C_{i}\right) \sigma_{i} \tag{3.6}
\end{equation*}
$$

QBoost

Next, we need to map the problem to an Ising model. Consider σ to be spin variables by defining

$$
\begin{equation*}
\sigma=2 s-1 \tag{3.5}
\end{equation*}
$$

The Ising Hamiltonian is then written as:

$$
\begin{equation*}
H=\frac{1}{4} \sum_{i, j=1}^{N} C_{i j} \sigma_{i} \sigma_{j}+\frac{1}{2} \sum_{i, j=1}^{N} C_{i} \sigma_{i}+\sum_{i=1}^{N}\left(\lambda^{\prime}-C_{i}\right) \sigma_{i} \tag{3.6}
\end{equation*}
$$

($\lambda^{\prime}:=\frac{1}{2} \lambda$ is a rescaled penalty coefficient)

QBoost

QA aims to solve the problem to minimize H and compute the ground state spin configuration bit-string $|s\rangle$, with $s \in\{-1,1\}^{N}$.

For each new sample x, the classifier is given as

(3.7)

QBoost

QA aims to solve the problem to minimize H and compute the ground state spin configuration bit-string $|s\rangle$, with $s \in\{-1,1\}^{N}$.

For each new sample x, the classifier is given as

$$
\begin{equation*}
R(x)=\sum_{i=1}^{N} s_{i} c_{i}(x) \quad \in[-1,1] \tag{3.7}
\end{equation*}
$$

QBoost: Application

QA for ML applications has been gaining a lot of popularity (and serves as a business model for a number of quantum computing startups).

It is claimed to have demonstrated performance advantage in compaerison with algorithms such as binary decision tree-based Extreme Gradient Boosting (XGBoost) and DNN classifiers on small datasets.

QBoost: Application

QA for ML applications has been gaining a lot of popularity (and serves as a business model for a number of quantum computing startups).

It is claimed to have demonstrated performance advantage in compaerison with algorithms such as binary decision tree-based Extreme Gradient Boosting (XGBoost) and DNN classifiers on small datasets.

QBoost: Application

A very interesting application is that of forecasting credit card client defaults. For that one can utilize a publicly available dataset available from the UCI Machine Learning Repository. This dataset consists of 30,000 samples with binary classifications:

- a client does not default - class 0
- a client does default - class 1

QBoost: Application

$N=23$ features $\left(F_{1}, \ldots, F_{23}\right)$ available:

- F_{1} : amount of given credit (continuous)
- F_{2} : gender (binary)
- F_{3} : education (discrete)
- F_{4} : marital status (discrete)
- F_{5} : age (discrete)
- F_{6} : repayment status of previous month (discrete)
- F_{7} : repayment status of two months ago (discrete)
- $F_{8}-F_{11}$: similar (discrete)
- F_{12} : bill amount past month (continuous)
- F_{13} : bill amount two months ago (continuous)
- $F_{14}-F_{17}$: similar (continuous)
- F_{18} : amount of previous month payment (continuous)
- F_{19} : amount of payment two months ago (continuous)
- $F_{20}-F_{23}$: similar (continuous)

QBoost: Application Results

	Accuracy	Precision	Recall
GradBoost	0.83	0.69	0.35
MLP	0.83	0.69	0.35
QBoost	0.83	0.71	0.33

It has be argued that QBoost provides an improvement on such approaches by finding an optimal configuration of the weak classifiers.

QBoost: Application Results

	Accuracy	Precision	Recall
GradBoost	0.83	0.69	0.35
MLP	0.83	0.69	0.35
QBoost	0.83	0.71	0.33

It has be argued that QBoost provides an improvement on such approaches by finding an optimal configuration of the weak classifiers.

Break

Questions?

WS-QAOA

Quantum Approximate Optimization Algorithm (QAOA) encodes a combinatorial optimization problem in a Hamiltonian H_{C} whose ground state is the optimum solution.

QAOA first creates an initial state which is the ground state of a mixer Hamiltonian H_{M} where a common choice is

WS-QAOA

Quantum Approximate Optimization Algorithm (QAOA) encodes a combinatorial optimization problem in a Hamiltonian H_{C} whose ground state is the optimum solution.

QAOA first creates an initial state which is the ground state of a mixer Hamiltonian H_{M} where a common choice is

$$
\begin{equation*}
H_{M}=-\sum_{i=1}^{N} \sigma_{i}^{\chi}, \tag{4.1}
\end{equation*}
$$

with ground state being $|+\rangle^{\otimes n}$.

WS-QAOA

Then, recall, for depth- L QAOA, we apply L times the unitary $U_{\mathrm{QAOA}}=U_{C}(\gamma) U_{B}(\beta)$ defined as:

WS-QAOA

Then, recall, for depth- L QAOA, we apply L times the unitary $U_{\mathrm{QAOA}}=U_{C}(\gamma) U_{B}(\beta)$ defined as:

$$
\begin{align*}
& U_{C}(\gamma):=e^{-\imath \gamma H_{C}} \tag{4.2}\\
& U_{B}(\beta):=e^{-\imath \beta H_{M}} . \tag{4.3}
\end{align*}
$$

The result is:
$U_{\mathrm{QAOA}}|+\rangle^{\otimes n}=|\gamma, \beta\rangle$.
(4.4)

A classical optimizer (e.g. SPSA) then seeks the optimal values of β and γ to create a trial state which minimizes the energy of the problem Hamiltonian H_{C}

WS-QAOA

Then, recall, for depth- L QAOA, we apply L times the unitary $U_{\mathrm{QAOA}}=U_{C}(\gamma) U_{B}(\beta)$ defined as:

$$
\begin{align*}
& U_{C}(\gamma):=e^{-\imath \gamma H_{C}} \tag{4.2}\\
& U_{B}(\beta):=e^{-\imath \beta H_{M}} . \tag{4.3}
\end{align*}
$$

The result is:

$$
\begin{equation*}
U_{\mathrm{QAOA}}|+\rangle^{\otimes n}=|\gamma, \beta\rangle . \tag{4.4}
\end{equation*}
$$

A classical optimizer (e.g. SPSA) then seeks the optimal values of β and γ to create a trial state which minimizes the energy of the problem Hamiltonian H_{C}

WS-QAOA

Then, recall, for depth- L QAOA, we apply L times the unitary $U_{\mathrm{QAOA}}=U_{C}(\gamma) U_{B}(\beta)$ defined as:

$$
\begin{align*}
& U_{C}(\gamma):=e^{-\imath \gamma H_{C}} \tag{4.2}\\
& U_{B}(\beta):=e^{-\imath \beta H_{M}} . \tag{4.3}
\end{align*}
$$

The result is:

$$
\begin{equation*}
U_{\mathrm{QAOA}}|+\rangle^{\otimes n}=|\gamma, \beta\rangle . \tag{4.4}
\end{equation*}
$$

A classical optimizer (e.g. SPSA) then seeks the optimal values of β and γ to create a trial state which minimizes the energy of the problem Hamiltonian H_{C}.

WS-QAOA

(Typo: instead of $U_{C}\left(\gamma_{L}\right) U_{B}\left(\beta_{L}\right)$ it should read instead $U_{L}\left(\gamma_{L}\right) U_{L}\left(\beta_{L}\right)$)

WS-QAOA

While very promising algorithm, initially it lacked theoretical guarantees on its performance ratio and for certain problem instances of interest (e.g. Max-Cut) it cannot, for constant L, outperform the classical Goemans-Williamson randomized rounding approximation.

While several improvements of the QAOA have been developed in the literature, we will focus here on warm-starting QAOA of Egger et. al. (incl. Jakub).

WS-QAOA

For Max-Cut it finds cuts whose expected value is an α fraction of the global optimum, for $0.87856<\alpha<0.87857$, with the expectation over the randomization in the rounding procedure)

WS-QAOA

While very promising algorithm,

initially it lacked theoretical guarantees on its performance ratio and for certain problem instances of interest.

While several improvements of the QAOA have been developed in the literature, we will focus here on warm-starting QAOA of Egger et. al. (incl. Jakub).

WS-QAOA

While very promising algorithm, initially it lacked theoretical guarantees on its performance ratio and for certain problem instances of interest.

While several improvements of the QAOA have been developed in the literature, we will focus here on warm-starting QAOA of Egger et. al. (incl. Jakub).

WS-QAOA

While very promising algorithm,
initially it lacked theoretical guarantees on its performance ratio and for certain problem instances of interest.

While several improvements of the QAOA have been developed in the literature, we will focus here on warm-starting QAOA of Egger et. al. (incl. Jakub).

WS-QAOA

Relaxations

QUBOs have already been discussed a lot. A common formulation is:

$$
\begin{equation*}
\min _{x \in\{0,1\}^{n}} x^{T} Q x+\mu^{T} x \tag{4.5}
\end{equation*}
$$

where x is a vector of n binary decision variables, $Q \in \mathbb{R}^{n \times n}$ a symmetric matrix, and $\mu \in \mathbb{R}^{n}$ a vector.
Since for binary variables $x_{i}^{2}=x_{i}, \mu$ can be added to the diagonal of Σ, so add μ bcz it simplifies the notation.

Note that practically any mixed-integer linear program (MILP) can be encoded in a QUBO it is automatically NP-Hard.

WS-QAOA

Relaxations

QUBOs have already been discussed a lot. A common formulation is:

$$
\begin{equation*}
\min _{x \in\{0,1\}^{n}} x^{T} Q x+\mu^{T} x \tag{4.5}
\end{equation*}
$$

where x is a vector of n binary decision variables, $Q \in \mathbb{R}^{n \times n}$ a symmetric matrix, and $\mu \in \mathbb{R}^{n}$ a vector.
Since for binary variables $x_{i}^{2}=x_{i}, \mu$ can be added to the diagonal of Σ, so add μ bcz it simplifies the notation.

Note that practically any mixed-integer linear program (MILP) can be encoded in a QUBO it is automatically NP-Hard.

WS-QAOA

Relaxations

QUBOs have already been discussed a lot. A common formulation is:

$$
\begin{equation*}
\min _{x \in\{0,1\}^{n}} x^{T} Q x+\mu^{T} x \tag{4.5}
\end{equation*}
$$

where x is a vector of n binary decision variables, $Q \in \mathbb{R}^{n \times n}$ a symmetric matrix, and $\mu \in \mathbb{R}^{n}$ a vector.

Since for binary variables $x_{i}^{2}=x_{i}, \mu$ can be added to the diagonal of Σ, so add μ bcz it simplifies the notation.

Note that practically any mixed-integer linear program (MILP) can be encoded in a QUBO it is automatically NP-Hard.

WS-QAOA

If Q is positive semidefinite, there exists a trivial continuous relaxation of the QUBO above:

$$
\begin{equation*}
\min _{x \in[0,1]^{n}} x^{\top} Q x \tag{4.6}
\end{equation*}
$$

is a convex quadratic program and the optimal solution c^{*} of the continuous relaxation is easily obtainable with classical optimizers.

WS-QAOA

The solutions of continuous-valued relaxation discussed above can be used to initialize VQAs: this is known as warm-starting.

Let us focus on how to warm-start the QAOA of Fahri et. al.

WS-QAOA

The solutions of continuous-valued relaxation discussed above can be used to initialize VQAs: this is known as warm-starting.

Let us focus on how to warm-start the QAOA of Fahri et. al.

WS-QAOA

In QAOA, each decision variable x_{i} of the discrete optimization problem corresponds to a qubit by the substitution $x_{i}=\left(1-s_{i}\right) / 2$. Each s_{i} is replaced by a spin operator σ_{i} to transform the cost function to a cost Hamiltonian H_{C}.

which corresponds to the solution c^{*} of the relaxed Problem (4.6).

WS-QAOA

In QAOA, each decision variable x_{i} of the discrete optimization problem corresponds to a qubit by the substitution $x_{i}=\left(1-s_{i}\right) / 2$. Each s_{i} is replaced by a spin operator σ_{i} to transform the cost function to a cost Hamiltonian H_{C}.

After utilizing the unitary U_{QAOA}, one performs the final measurement: a randomized rounding.

which corresponds to the solution c^{*} of the relaxed Problem (4.6).

WS-QAOA

In QAOA, each decision variable x_{i} of the discrete optimization problem corresponds to a qubit by the substitution $x_{i}=\left(1-s_{i}\right) / 2$. Each s_{i} is replaced by a spin operator σ_{i} to transform the cost function to a cost Hamiltonian H_{C}.

After utilizing the unitary U_{QAOA}, one performs the final measurement: a randomized rounding. Warm-starting amounts to replacing the initial equal superposition state $|+\rangle^{\otimes n}$ with a state

$$
\begin{equation*}
\left|\phi^{*}\right\rangle=\bigotimes_{i=0}^{n-1} \hat{R}_{y}\left(\theta_{i}\right)|0\rangle_{n} \tag{4.7}
\end{equation*}
$$

which corresponds to the solution c^{*} of the relaxed Problem (4.6).

WS-QAOA

Here, $\hat{R}_{y}\left(\theta_{i}\right)$ is a θ_{i}-parametrized rotation around the y-axis of the qubit and $\theta_{i}:=2 \arcsin \left(\sqrt{c_{i}^{*}}\right)$ for c_{i}^{*} given as the solution of QUBO (4.6).

WS-QAOA

The mixer Hamiltonian also is replaced. A choice for the warm-starting mixer Hamiltonian is

where

which has $R_{y}\left(\theta_{i}\right)|0\rangle$ as ground state. One can show that the ground state of $H_{M}^{\text {ws }}$ is $\left|\phi^{*}\right\rangle$ with energy $-n$.

$$
U_{M}(\beta)=e^{-i \beta r_{M}^{\prime w s}}
$$

WS-QAOA

The mixer Hamiltonian also is replaced. A choice for the warm-starting mixer Hamiltonian is

$$
\begin{equation*}
H_{M}^{\mathrm{ws}}=\sum_{i=1}^{n} H_{M, i}^{\mathrm{ws}} \tag{4.8}
\end{equation*}
$$

where

WS-QAOA

The mixer Hamiltonian also is replaced. A choice for the warm-starting mixer Hamiltonian is

$$
\begin{equation*}
H_{M}^{\mathrm{ws}}=\sum_{i=1}^{n} H_{M, i}^{\mathrm{ws}} \tag{4.8}
\end{equation*}
$$

where

$$
H_{M, i}^{\mathrm{ws}}=\left(\begin{array}{cc}
2 c_{i}^{*}-1 & -2 \sqrt{c_{i}^{*}\left(1-c_{i}^{*}\right)} \tag{4.9}\\
-2 \sqrt{c_{i}^{*}\left(1-c_{i}^{*}\right)} & 1-2 c_{i}^{*}
\end{array}\right)
$$

which has $R_{y}\left(\theta_{i}\right)|0\rangle$ as ground state. One can show that the ground state of $H_{M}^{w s}$

WS-QAOA

The mixer Hamiltonian also is replaced. A choice for the warm-starting mixer Hamiltonian is

$$
\begin{equation*}
H_{M}^{\mathrm{ws}}=\sum_{i=1}^{n} H_{M, i}^{\mathrm{ws}} \tag{4.8}
\end{equation*}
$$

where

$$
H_{M, i}^{\mathrm{ws}}=\left(\begin{array}{cc}
2 c_{i}^{*}-1 & -2 \sqrt{c_{i}^{*}\left(1-c_{i}^{*}\right)} \tag{4.9}\\
-2 \sqrt{c_{i}^{*}\left(1-c_{i}^{*}\right)} & 1-2 c_{i}^{*}
\end{array}\right)
$$

which has $R_{y}\left(\theta_{i}\right)|0\rangle$ as ground state. One can show that the ground state of H_{M}^{ws} is $\left|\phi^{*}\right\rangle$ with energy $-n$.

WS-QAOA

The mixer Hamiltonian also is replaced. A choice for the warm-starting mixer Hamiltonian is

$$
\begin{equation*}
H_{M}^{\mathrm{ws}}=\sum_{i=1}^{n} H_{M, i}^{\mathrm{ws}} \tag{4.8}
\end{equation*}
$$

where

$$
H_{M, i}^{\mathrm{ws}}=\left(\begin{array}{cc}
2 c_{i}^{*}-1 & -2 \sqrt{c_{i}^{*}\left(1-c_{i}^{*}\right)} \tag{4.9}\\
-2 \sqrt{c_{i}^{*}\left(1-c_{i}^{*}\right)} & 1-2 c_{i}^{*}
\end{array}\right)
$$

which has $R_{y}\left(\theta_{i}\right)|0\rangle$ as ground state. One can show that the ground state of $H_{M}^{\text {ws }}$ is $\left|\phi^{*}\right\rangle$ with energy $-n$. Therefore, WS-QAOA applies at layer k a mixing gate which is given by the time-evolved mixing Hamiltonian $U_{M}(\beta)=e^{-\imath \beta H_{M}^{\mathrm{ws}}}$.

WS-QAOA

For technical reasons one has to actually modify the definition of θ_{i} as

$$
\begin{array}{lll}
\theta_{i}=2 \arcsin \left(\sqrt{c_{i}^{*}}\right) & \text { if } & c_{i}^{*} \in[\varepsilon, 1-\varepsilon] \\
\theta_{i}=2 \arcsin (\sqrt{\varepsilon}) & \text { if } & c_{i}^{*} \leq \varepsilon \\
\theta_{i}=2 \arcsin (\sqrt{1-\varepsilon}) & \text { if } & c_{i}^{*} \geq 1-\varepsilon .
\end{array}
$$

where $\varepsilon \in[0,0.5]$ and the mixer Hamiltonian H_{M} is adjusted accordingly.

WS-QAOA

For technical reasons one has to actually modify the definition of θ_{i} as

$$
\begin{array}{lll}
\theta_{i}=2 \arcsin \left(\sqrt{c_{i}^{*}}\right) & \text { if } & c_{i}^{*} \in[\varepsilon, 1-\varepsilon] \\
\theta_{i}=2 \arcsin (\sqrt{\varepsilon}) & \text { if } & c_{i}^{*} \leq \varepsilon \\
\theta_{i}=2 \arcsin (\sqrt{1-\varepsilon}) & \text { if } & c_{i}^{*} \geq 1-\varepsilon .
\end{array}
$$

where $\varepsilon \in[0,0.5]$ and the mixer Hamiltonian H_{M} is adjusted accordingly.
The parameter ε provides a continuous mapping between WS-QAOA and standard QAOA since at $\varepsilon=0.5$ the initial state is the equal superposition state and the mixer Hamiltonian is the X operator.

If all $c_{i}^{*} \in(0,1)$ or $\varepsilon>0$, WS-QAOA converges to the optimal solution of (QUBO) as the depth L approaches infinity as does standard QAOA

WS-QAOA

For technical reasons one has to actually modify the definition of θ_{i} as

$$
\begin{array}{lll}
\theta_{i}=2 \arcsin \left(\sqrt{c_{i}^{*}}\right) & \text { if } & c_{i}^{*} \in[\varepsilon, 1-\varepsilon] \\
\theta_{i}=2 \arcsin (\sqrt{\varepsilon}) & \text { if } & c_{i}^{*} \leq \varepsilon \\
\theta_{i}=2 \arcsin (\sqrt{1-\varepsilon}) & \text { if } & c_{i}^{*} \geq 1-\varepsilon .
\end{array}
$$

where $\varepsilon \in[0,0.5]$ and the mixer Hamiltonian H_{M} is adjusted accordingly.
The parameter ε provides a continuous mapping between WS-QAOA and standard QAOA since at $\varepsilon=0.5$ the initial state is the equal superposition state and the mixer Hamiltonian is the X operator.

If all $c_{i}^{*} \in(0,1)$ or $\varepsilon>0$, WS-QAOA converges to the optimal solution of (QUBO) as the depth L approaches infinity as does standard QAOA.

WS-QAOA

For large enough L, WS-QAOA the adiabatic evolution transforming the ground state of the mixer into the ground state of \hat{H}_{C} as expected. The speed of the adiabatic evolution is limited by the spectral gap of the intermediate Hamiltonians as we discussed in the previous lecture.

The speed of the evolution can be related to the depth L, where a slow evolution
(larger terminal time T) implies a larger L. The idea of WS-QAOA is to speed-up this evolution by optimizing the parameters instead of following a fixed annealing schedule.

WS-QAOA

For large enough L, WS-QAOA the adiabatic evolution transforming the ground state of the mixer into the ground state of \hat{H}_{C} as expected. The speed of the adiabatic evolution is limited by the spectral gap of the intermediate Hamiltonians as we discussed in the previous lecture.

The speed of the evolution can be related to the depth L, where a slow evolution (larger terminal time T) implies a larger L. The idea of WS-QAOA is to speed-up this evolution by optimizing the parameters instead of following a fixed annealing schedule.

WS-QAOA

Below we quote a nice experimental demonstration from Egger et. al.:

