Quantum Computing

Exercises 1: Intro to Quantum Physics

1. a) Show that the left and right states defined as:

$$
\begin{aligned}
& |l\rangle=\frac{1}{\sqrt{2}}(|u\rangle+|d\rangle) \\
& |r\rangle=\frac{1}{\sqrt{2}}(|u\rangle-|d\rangle)
\end{aligned}
$$

are orthogonal:
b) Calculate the expectation values of σ_{x} in the states $|d\rangle$ and $|l\rangle$, and of σ_{z} in the state $|r\rangle$.
2. a) Normalise the state

$$
|\psi\rangle=(1-i)|u\rangle+2 i|d\rangle .
$$

b) For this (normalised) state, calculate the probability of getting both positive $(+1)$ and negative (-1) spin eigenvalues by measuring σ_{z}.
3. [Nielsen \& Chuang Ex. 2.17] (Eigendecomposition of a Pauli matrix) Find the eigenvectors, eigenvalues and diagonal representations of σ_{y}.
4. Show that the eigenvalues of hermitian matrices, $\mathbf{A}=\mathbf{A}^{\dagger}$, are real: $\lambda \in \mathbb{R}$.
5. [Susskind \& Friedman Ex. 5.2] For any observables \mathbf{A} and \mathbf{B}, and state $|\psi\rangle$, derive Heisenberg's uncertainty relation: $\left.\Delta \mathbf{A} \cdot \Delta \mathbf{B} \geq \frac{1}{2}|\langle\psi|[A, B]| \psi\right\rangle \mid$, where $(\Delta \mathbf{A})^{2}=\sum_{a}(a-\langle\mathbf{A}\rangle)^{2} P(a)$, is the standard deviation of the operator A.
6. Derive the evolution operator: $U(t)=e^{-\frac{i}{\hbar} H t}$, by solving the Schrödinger equation: $i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(t)\rangle$.

