Quantum Computing

Exercises 1: Intro to Quantum Physics

1. a) Show that the left and right states defined as:

$$\begin{split} |l\rangle &= \frac{1}{\sqrt{2}}(|u\rangle + |d\rangle) \\ |r\rangle &= \frac{1}{\sqrt{2}}(|u\rangle - |d\rangle) \end{split}$$

are orthogonal:

b) Calculate the expectation values of σ_x in the states $|d\rangle$ and $|l\rangle$, and of σ_z in the state $|r\rangle$.

2. a) Normalise the state

$$|\psi\rangle = (1-i)|u\rangle + 2i|d\rangle$$

b) For this (normalised) state, calculate the probability of getting both positive (+1) and negative (-1) spin eigenvalues by measuring σ_z .

3. [Nielsen & Chuang Ex. 2.17] (Eigendecomposition of a Pauli matrix) Find the eigenvectors, eigenvalues and diagonal representations of σ_y .

4. Show that the eigenvalues of hermitian matrices, $\mathbf{A} = \mathbf{A}^{\dagger}$, are real: $\lambda \in \mathbb{R}$.

5. [Susskind & Friedman Ex. 5.2] For any observables **A** and **B**, and state $|\psi\rangle$, derive Heisenberg's uncertainty relation: $\Delta \mathbf{A} \cdot \Delta \mathbf{B} \geq \frac{1}{2} |\langle \psi | [A, B] | \psi \rangle|$, where $(\Delta \mathbf{A})^2 = \sum_a (a - \langle \mathbf{A} \rangle)^2 P(a)$, is the standard deviation of the operator **A**.

6. Derive the evolution operator: $U(t) = e^{-\frac{i}{\hbar}Ht}$, by solving the Schrödinger equation: $i\hbar \frac{d|\psi(t)\rangle}{dt} = H|\psi(t)\rangle$.