Quantum Computing

Exercises 1: Intro to Quantum Physics

1. a) Show that the left and right states defined as:

$$
\begin{aligned}
& |l\rangle=\frac{1}{\sqrt{2}}(|u\rangle+|d\rangle) \\
& |r\rangle=\frac{1}{\sqrt{2}}(|u\rangle-|d\rangle)
\end{aligned}
$$

are orthogonal:
b) Calculate the expectation values of σ_{x} in the states $|d\rangle$ and $|l\rangle$, and of σ_{z} in the state $|r\rangle$.
a) We take their product, which in the braket notation reads as $\langle l \mid r\rangle$, and verify that it is 0 :

$$
\langle l \mid r\rangle=\frac{1}{\sqrt{2}}(\langle u|+\langle d|) \cdot \frac{1}{\sqrt{2}}(|u\rangle-|d\rangle)=\frac{1}{2}(\langle u \mid u\rangle+\langle u \mid d\rangle+\langle d \mid u\rangle-\langle d \mid d\rangle)
$$

Now, choosing the computational basis $|u\rangle=\binom{1}{0},|d\rangle=\binom{0}{1}$, we have:

$$
\begin{aligned}
& \langle u \mid u\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\binom{1}{0}=1 \quad, \quad\langle u \mid d\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \cdot\binom{0}{1}=0 \\
& \langle d \mid u\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\binom{1}{0}=0 \quad, \quad\langle d \mid d\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \cdot\binom{0}{1}=1
\end{aligned}
$$

b) We insert the Pauli matrices in the expression of the expected value for a general operator: $\langle\psi| A|\psi\rangle$

$$
\begin{gathered}
\langle d| \sigma_{x}|d\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{1}{0}=0 \\
\langle l| \sigma_{x}|l\rangle=\frac{1}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{1}=1 \\
\langle r| \sigma_{z}|r\rangle=0
\end{gathered}
$$

2. a) Normalise the state

$$
|\psi\rangle=(1-i)|u\rangle+2 i|d\rangle .
$$

b) For this (normalised) state, calculate the probability of getting both positive $(+1)$ and negative (-1) spin eigenvalues by measuring σ_{z}.
a) Normalisation means that taking the norm of the state, $|\psi\rangle$, the result is 1 , that is: $\sqrt{\langle\psi \mid \psi\rangle}=1$.

But taking the squared norm in this case is:

$$
\langle\psi \mid \psi\rangle=(1-i) \cdot(1+i)+(2 i) \cdot(-2 i)=2+4=6
$$

We should then choose the normalisation constant N by which we will multiply the state $|\psi\rangle \rightarrow N \cdot|\psi\rangle$ such that the result is 1 :

$$
\langle N \cdot \psi \mid N \cdot \psi\rangle=N^{2} \overbrace{\langle\psi \mid \psi\rangle}^{6}=1 \Rightarrow N=\frac{1}{\sqrt{6}}
$$

b) $P_{\psi}(+)=|\langle u \mid \psi\rangle|^{2}=\langle\psi \mid u\rangle^{*}\langle u \mid \psi\rangle=\frac{1}{3}$, and, since the state ψ is normalised, we know that $P_{\psi}(-)=1-1 / 3=$ $2 / 3=|\langle d \mid \psi\rangle|^{2}$.
3. [Nielsen \& Chuang Ex. 2.17] (Eigendecomposition of a Pauli matrix) Find the eigenvectors, eigenvalues and diagonal representations of σ_{y}.

$$
\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \operatorname{det}\left(\sigma_{y}-\lambda I\right)=\left|\begin{array}{cc}
-\lambda & -i \\
i & -\lambda
\end{array}\right|=\lambda^{2}+i^{2}=0 \Rightarrow \lambda= \pm 1
$$

For the eigenvalue -1 we have:

$$
\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right) \cdot\binom{a}{b}=\binom{0}{0} \Rightarrow\left\{\begin{array}{l}
a-i b=0 \\
a i+b=0
\end{array}\right.
$$

The eigenvector is therefore $v_{-}=\binom{a}{i b}$. Choosing $a=b=1$, we have $v_{-}=\binom{1}{i}$.
And in an analogous way for the positive eigenvalue +1 :
$v_{+}=\binom{i}{1}$.
4. Show that the eigenvalues of hermitian matrices, $\mathbf{A}=\mathbf{A}^{\dagger}$, are real: $\lambda \in \mathbb{R}$.

Consider the matrix element of the adjoint of the operator: $\langle\phi| A^{\dagger}|\psi\rangle$
The operator can either act on the ket (that is, from the left) or on the bra, in which case it is 'daggered':

$$
\langle\phi| A^{\dagger}|\psi\rangle=\langle A \phi \mid \psi\rangle
$$

Now, we know that for any bra(c)ket we have: $\langle\phi \mid \psi\rangle=\langle\psi \mid \phi\rangle^{*}$
A fact that comes from the very definition of the inner product which is linear in the second argument and anti-linear in the first, see for instance Nielsen and Chuang eqs. (2.13) and (2.15)
Taking this remark into account:

$$
\langle\phi| A^{\dagger}|\psi\rangle=\langle A \phi \mid \psi\rangle=\langle\psi \mid A \phi\rangle^{*}=\langle\psi| A|\phi\rangle^{*}
$$

Particularising for the case where $\phi=\psi$ and taking into account the eigenvalue equation, $\mathbf{A}|\psi\rangle=a|\psi\rangle$, we retrieve the eigenvalues of the operator:

$$
\langle\psi| \mathbf{A}|\psi\rangle=\langle\psi| a|\psi\rangle=a \cdot\langle\psi \mid \psi\rangle=a
$$

Last, by assumption, we have $A^{\dagger}=A$, so:

$$
\langle\psi| A^{\dagger}|\psi\rangle=\langle\psi| A|\psi\rangle=\langle\psi| A|\psi\rangle^{*} \Rightarrow a=a^{*}
$$

5. [Susskind \& Friedman Ex. 5.2] For any observables A and B, and state $|\psi\rangle$, derive Heisenberg's uncertainty relation: $\left.\Delta \mathbf{A} \cdot \Delta \mathbf{B} \geq \frac{1}{2}|\langle\psi|[A, B]| \psi\right\rangle \mid$, where $(\Delta \mathbf{A})^{2}=\sum_{a}(a-\langle\mathbf{A}\rangle)^{2} P(a)$, is the standard deviation of the operator A.

Following the reasoning in Susskind $5.4 \rightarrow 5.7$, we first prove that $(\Delta \mathbf{A})=\left\langle\overline{\mathbf{A}}^{2}\right\rangle$:

$$
\begin{gathered}
(\Delta \mathbf{A})^{2}=\sum_{a}(a-\langle\mathbf{A}\rangle)^{2} P(a)=\sum_{a}(a-\langle\mathbf{A}\rangle)^{2}|\langle a \mid \psi\rangle|^{2}=\sum_{a}(a-\langle\mathbf{A}\rangle)^{2}\langle a \mid \psi\rangle^{*}\langle a \mid \psi\rangle=\sum_{a}(a-\langle\mathbf{A}\rangle)^{2}\langle\psi \mid a\rangle\langle a \mid \psi\rangle= \\
=\langle\psi| \underbrace{\sum_{a}(a-\langle\mathbf{A}\rangle)^{2}|a\rangle\langle a \mid \psi\rangle}_{(\mathbf{A}-\langle\mathbf{A}\rangle)^{2}}=\left\langle\overline{\mathbf{A}}^{2}\right\rangle
\end{gathered}
$$

Where the last claim in the brace can be shown using the completeness relation: $\mathbf{A}=\sum_{a} a|a\rangle\langle a|$:

$$
(\mathbf{A}-\langle\mathbf{A}\rangle)^{2}=\left(\sum_{a} a-\langle\mathbf{A}\rangle|a\rangle\langle a|\right)\left(\sum_{\alpha} \alpha-\langle\mathbf{A}\rangle|\alpha\rangle\langle\alpha|\right)=\sum_{a, b}(a-\langle\mathbf{A}\rangle)(\alpha-\langle\mathbf{A}\rangle)|a\rangle \underbrace{\langle a \mid \alpha\rangle}_{\delta_{a \alpha}}\langle\alpha|=\sum_{a}(a-\langle\mathbf{A}\rangle)^{2}|a\rangle\langle a|
$$

Secondly, we prove $[\overline{\mathbf{A}}, \overline{\mathbf{B}}]=[\mathbf{A}, \mathbf{B}]$, by computing explicitly the commutator:

$$
[\overline{\mathbf{A}}, \overline{\mathbf{B}}]=(\mathbf{A}-\langle\mathbf{A}\rangle)(\mathbf{B}-\langle\mathbf{B}\rangle)-(\mathbf{B}-\langle\mathbf{B}\rangle)(\mathbf{A}-\langle\mathbf{A}\rangle)=\mathbf{A B}-\mathbf{A}\langle\mathbf{B}\rangle-\langle\mathbf{A}\rangle \mathbf{B}+\langle\mathbf{A}\rangle\langle\mathbf{B}\rangle-\mathbf{B} \mathbf{A}+\mathbf{B}\langle\mathbf{A}\rangle+\langle\mathbf{B}\rangle-\langle\mathbf{A}\rangle\langle\mathbf{B}\rangle
$$

Since expected values are just scalars, they commute with operators, and many cancelations take place, giving the result.
Last, by using Cauchy-Schwarz inequality $2|X||Y| \geq|\langle X \mid Y\rangle+\langle Y \mid X\rangle|$ and defining the states: $|X\rangle=\overline{\mathbf{A}}|\Psi\rangle,|Y\rangle=$ $i \overline{\mathbf{B}}|\Psi\rangle$, one obtains the result wanted by following equations (5.11) \rightarrow (5.13) in Susskind.
6. Derive the evolution operator: $U(t)=e^{-\frac{i}{\hbar} H t}$, by solving the Schrödinger equation: $i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(t)\rangle$.

The Schrödinger equation,$i \hbar \psi^{\prime}=H \psi$, is a first order linear homogenous ODE. Its solution is then given by:

$$
\int \frac{\psi^{\prime}}{\psi} d t=-\int \frac{i}{\hbar} H d t \rightarrow \log \psi=-\frac{i}{\hbar} H t+k \rightarrow \psi(t)=e^{-\frac{i}{\hbar} H t+k}
$$

The constant k in the last term gives us the initial state of the system, $|\psi(0)\rangle$. The evolution between this state and any other in time $|\psi(t)\rangle$, is given by:

$$
\left.|\psi(t)\rangle=e^{-\frac{i}{\hbar} H t}|\psi(0) \Longleftrightarrow| \psi(t)\right\rangle=U(t)|\psi(0)\rangle
$$

