
Quantum Computing

Exercises 1: Intro to Quantum Physics

1. a) Show that the left and right states defined as:

|l⟩ = 1√
2
(|u⟩+ |d⟩)

|r⟩ = 1√
2
(|u⟩ − |d⟩)

are orthogonal:
b) Calculate the expectation values of σx in the states |d⟩ and |l⟩, and of σz in the state |r⟩.

a) We take their product, which in the braket notation reads as ⟨l|r⟩, and verify that it is 0:

⟨l|r⟩ = 1√
2
(⟨u|+ ⟨d|) · 1√

2
(|u⟩ − |d⟩) = 1

2

(
⟨u|u⟩+ ⟨u|d⟩+ ⟨d|u⟩ − ⟨d|d⟩

)
Now, choosing the computational basis |u⟩ =

(
1
0

)
, |d⟩ =

(
0
1

)
, we have:

⟨u|u⟩ =
(
1 0

)
·
(
1
0

)
= 1 , ⟨u|d⟩ =

(
1 0

)
·
(
0
1

)
= 0

⟨d|u⟩ =
(
0 1

)
·
(
1
0

)
= 0 , ⟨d|d⟩ =

(
0 1

)
·
(
0
1

)
= 1

b) We insert the Pauli matrices in the expression of the expected value for a general operator: ⟨ψ|A|ψ⟩

⟨d|σx|d⟩ =
(
0 1

)(0 1
1 0

)(
0
1

)
=

(
0 1

)(1
0

)
= 0

⟨l|σx|l⟩ =
1

2

(
1 1

)(0 1
1 0

)(
1
1

)
= 1

⟨r|σz|r⟩ = 0

2. a) Normalise the state
|ψ⟩ = (1− i)|u⟩+ 2i|d⟩.

b) For this (normalised) state, calculate the probability of getting both positive (+1) and negative (−1) spin
eigenvalues by measuring σz.

a) Normalisation means that taking the norm of the state, |ψ⟩, the result is 1, that is:
√
⟨ψ|ψ⟩ = 1.

But taking the squared norm in this case is:

⟨ψ|ψ⟩ = (1− i) · (1 + i) + (2i) · (−2i) = 2 + 4 = 6

We should then choose the normalisation constant N by which we will multiply the state |ψ⟩ → N · |ψ⟩ such that
the result is 1:

⟨N · ψ|N · ψ⟩ = N2

6︷ ︸︸ ︷
⟨ψ|ψ⟩ = 1 ⇒ N =

1√
6

b) Pψ(+) = |⟨u|ψ⟩|2 = ⟨ψ|u⟩∗⟨u|ψ⟩ = 1
3 , and, since the state ψ is normalised, we know that Pψ(−) = 1 − 1/3 =

2/3 = |⟨d|ψ⟩|2.

3. [Nielsen & Chuang Ex. 2.17] (Eigendecomposition of a Pauli matrix) Find the eigenvectors, eigenvalues and
diagonal representations of σy.

σy =

(
0 −i
i 0

)
; det(σy − λI) =

∣∣∣∣−λ −i
i −λ

∣∣∣∣ = λ2 + i2 = 0 ⇒ λ = ±1

For the eigenvalue −1 we have:
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(
1 −i
i 1

)
·
(
a
b

)
=

(
0
0

)
⇒

{
a− ib = 0
ai+ b = 0

The eigenvector is therefore v− =

(
a
ib

)
. Choosing a = b = 1, we have v− =

(
1
i

)
.

And in an analogous way for the positive eigenvalue +1:

v+ =

(
i
1

)
.

4. Show that the eigenvalues of hermitian matrices, A = A†, are real: λ ∈ R.

Consider the matrix element of the adjoint of the operator: ⟨ϕ|A†|ψ⟩
The operator can either act on the ket (that is, from the left) or on the bra, in which case it is ’daggered’:

⟨ϕ|A†|ψ⟩ = ⟨Aϕ|ψ⟩

Now, we know that for any bra(c)ket we have: ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗
A fact that comes from the very definition of the inner product which is linear in the second argument and anti-linear
in the first, see for instance Nielsen and Chuang eqs. (2.13) and (2.15)
Taking this remark into account:

⟨ϕ|A†|ψ⟩ = ⟨Aϕ|ψ⟩ = ⟨ψ|Aϕ⟩∗ = ⟨ψ|A|ϕ⟩∗

Particularising for the case where ϕ = ψ and taking into account the eigenvalue equation, A|ψ⟩ = a|ψ⟩, we retrieve
the eigenvalues of the operator:

⟨ψ|A|ψ⟩ = ⟨ψ|a|ψ⟩ = a · ⟨ψ|ψ⟩ = a

Last, by assumption, we have A† = A, so:

⟨ψ|A†|ψ⟩ = ⟨ψ|A|ψ⟩ = ⟨ψ|A|ψ⟩∗ ⇒ a = a∗

5. [Susskind & Friedman Ex. 5.2] For any observables A and B, and state |ψ⟩, derive Heisenberg’s uncertainty
relation: ∆A ·∆B ≥ 1

2 |⟨ψ|[A,B]|ψ⟩|, where (∆A)2 =
∑
a(a− ⟨A⟩)2P (a), is the standard deviation of the operator

A.

Following the reasoning in Susskind 5.4 → 5.7, we first prove that (∆A) = ⟨Ā2⟩ :

(∆A)2 =
∑
a

(a− ⟨A⟩)2P (a) =
∑
a

(a− ⟨A⟩)2|⟨a|ψ⟩|2 =
∑
a

(a− ⟨A⟩)2⟨a|ψ⟩∗⟨a|ψ⟩ =
∑
a

(a− ⟨A⟩)2⟨ψ|a⟩⟨a|ψ⟩ =

= ⟨ψ|
∑
a

(a− ⟨A⟩)2|a⟩⟨a|︸ ︷︷ ︸
(A−⟨A⟩)2

ψ⟩ = ⟨Ā2⟩

Where the last claim in the brace can be shown using the completeness relation: A =
∑
a a|a⟩⟨a| :

(A− ⟨A⟩)2 = (
∑
a

a− ⟨A⟩|a⟩⟨a|)(
∑
α

α− ⟨A⟩|α⟩⟨α|) =
∑
a,b

(a− ⟨A⟩)(α− ⟨A⟩)|a⟩ ⟨a|α⟩︸ ︷︷ ︸
δaα

⟨α| =
∑
a

(a− ⟨A⟩)2|a⟩⟨a|

Secondly, we prove [Ā, B̄] = [A,B], by computing explicitly the commutator:

[Ā, B̄] = (A−⟨A⟩)(B−⟨B⟩)− (B−⟨B⟩)(A−⟨A⟩) = AB−A⟨B⟩− ⟨A⟩B+ ⟨A⟩⟨B⟩−BA+B⟨A⟩+ ⟨B⟩− ⟨A⟩⟨B⟩

Since expected values are just scalars, they commute with operators, and many cancelations take place, giving the
result.
Last, by using Cauchy-Schwarz inequality 2|X||Y | ≥ |⟨X|Y ⟩+ ⟨Y |X⟩| and defining the states: |X⟩ = Ā|Ψ⟩ , |Y ⟩ =
iB̄|Ψ⟩, one obtains the result wanted by following equations (5.11)→(5.13) in Susskind.

6. Derive the evolution operator: U(t) = e−
i
ℏHt, by solving the Schrödinger equation: iℏd|ψ(t)⟩dt = H|ψ(t)⟩.

The Schrödinger equation , iℏψ′ = Hψ, is a first order linear homogenous ODE. Its solution is then given by:
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∫
ψ′

ψ
dt = −

∫
i

ℏ
Hdt→ logψ = − i

ℏ
Ht+ k → ψ(t) = e−

i
ℏHt+k

The constant k in the last term gives us the initial state of the system, |ψ(0)⟩. The evolution between this state and
any other in time |ψ(t)⟩, is given by:

|ψ(t)⟩ = e−
i
ℏHt|ψ(0) ⇐⇒ |ψ(t)⟩ = U(t)|ψ(0)⟩
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