Quantum Computing

Exercises 3: Real Quantum Theory and Bell states

1. Check that the probabilities of measuring σ_{y} in the state:

$$
|\psi\rangle=\frac{1}{\sqrt{6}}[(1-i)|u\rangle+2 i|d\rangle] .
$$

are the same restricting ourselves to \mathbb{R} and performing the change

$$
\begin{gathered}
|\tilde{\psi}\rangle=\frac{1}{2}\left[|\psi\rangle \otimes|+i\rangle+|\psi\rangle^{*} \otimes|-i\rangle\right] \\
\tilde{\mathbf{A}}=\frac{1}{2}\left[\mathbf{A} \otimes|+i\rangle\langle+i|+\mathbf{A}^{*} \otimes|-i\rangle\langle-i|\right]
\end{gathered}
$$

in both the operator and the state, where $| \pm i\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm i|1\rangle)$.
2. Given a system of two qubits labeled by A and B, obtain the Bell states,

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right) \quad, \quad\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}-|1\rangle_{A} \otimes|1\rangle_{B}\right) \\
& \left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}+|1\rangle_{A} \otimes|0\rangle_{B}\right) \quad, \quad\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}-|1\rangle_{A} \otimes|0\rangle_{B}\right)
\end{aligned}
$$

by applying a combination of a Hadamard gate and a cNOT gate to the states:

$$
|00\rangle,|01\rangle,|10\rangle,|11\rangle
$$

