Quantum Computing

Exercises 9: Quantum Random Walks

1. At each time step, a quantum walk corresponds to a unitary map $U \in U(N)$ such that

$$
\begin{aligned}
U: \mathcal{H}_{G} & \rightarrow \mathcal{H}_{G} \\
|x\rangle & \mapsto a|x-1\rangle+b|x\rangle+c|x+1\rangle
\end{aligned}
$$

Show that U is unitary if and only if one of the following three conditions is true: (a) $|a|=1, b=c=0$, (b) $|b|=1, a=c=0$, (c) $|c|=1, a=b=0$.
2. Demonstrate that the shift operator S, as defined as

$$
\left.S=\left(|0\rangle\langle 0| \otimes \sum_{x=-\infty}^{+\infty}|x+1\rangle\langle x|\right)+\left(|1\rangle\langle 1| \otimes \sum_{x=-\infty}^{+\infty} \mid x-1\right)\langle x|\right)
$$

is equivalent to

$$
S|i, x\rangle= \begin{cases}|0, x+1\rangle & \text { if } i=0 \\ |1, x-1\rangle & \text { if } i=1\end{cases}
$$

3. Consider a one-dimensional quantum walk on \mathbb{Z} where the coin operator C is parameterized by an angle θ as :

$$
c(\theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

Tue walker starts at $x=0$ with initial state $\left|\psi_{0}\right\rangle=|i\rangle \otimes|x=0\rangle$ and $|i\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$. Use the shift operator as defined before a) Calculate the state of the system $\left|\psi_{1}\right\rangle$ after 1 step.
b) Compute the probabilities $p(x=1)$ and $p(x=-1)$ that the walker is at $x=1$ or $x=-1$.
c) Determine for which values of θ (if they exist) the quantum walks are unbiased $(p(x=1)=p(x=-1))$
d) Prove whether the Hadamard walker is biased a not.
4. In the lecture notes, starting at the state $\left|\psi_{0}\right\rangle=|0\rangle|0\rangle$, we have seen how to obtain the successive states up to $\left|\psi_{3}\right\rangle$ by using the unitary operator $U=S(H \otimes I)$. Derive $\left|\psi_{4}\right\rangle$ for the walker on the finite subset of \mathbb{Z}.
5. Consider

$$
H_{G}^{(2)}=\sum_{\omega=1}^{2} \sum_{(i, j) \in E(G)}\left(|i\rangle\left\langle\left. j\right|_{\omega}+\mid j\right\rangle\left\langle\left. i\right|_{w}\right)\right.
$$

where $E(G)=\{(1,2)$ and $(2,1)\}$. This is the Hamiltonian for 2 particles on this G.
a) Assume we have distinguishable walkers. Compute the evolution of the initial state $\left|\psi_{0}\right\rangle=|1,2\rangle$ under the Hamiltonian $H_{G}^{(2)}$.
b) Assuming the walkers are distinguishable, now compute the evolution for the fermionic state $\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2}}(|1,2\rangle-$ $|2,1\rangle$)

