Quantum Computing

Exercises: Quantum walks

1. At each time step, a quantum walk corresponds to a unitary map $U \in U(N)$ such that

$$
\left.\begin{array}{rl}
U: \mathcal{H}_{G} & \rightarrow \mathcal{H}_{G} \\
& |x\rangle
\end{array}>a|x-1\rangle+b|x\rangle+c|x+1\rangle\right)
$$

Show that U is unitary if and only if one of the following three conditions is true:
(a) $|a|=1, b=c=0$,
(b) $|b|=1, a=c=0$,
(c) $|c|=1, a=b=0$.
2. Demonstrate that the shift operator S, as defined in

$$
S=\left(|0\rangle\langle 0| \otimes \sum_{x=-\infty}^{\infty}|x+1\rangle\langle x|\right)+\left(|1\rangle\langle 1| \otimes \sum_{x=-\infty}^{\infty}|x-1\rangle\langle x|\right)
$$

is equivalent to

$$
S|i, x\rangle= \begin{cases}|0, x+1\rangle & \text { if } i=0 \\ |1, x-1\rangle & \text { if } i=1\end{cases}
$$

3. In the lecture notes, starting at the state $\left|\psi_{0}\right\rangle=|0\rangle|0\rangle$, we have seen how to obtain the succesive states up to $\left|\psi_{3}\right\rangle$ by using the unitary operator $U=S(H \otimes I)$. Derive $\left|\psi_{4}\right\rangle$ for the walker on the finite subset of \mathbb{Z}.
4. Show that the formula from the lecture notes, $H|k\rangle=2 \cos (k)|k\rangle$ holds, by performing the Fourier transform in the computational basis states.
