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Recap: Unreliable actions in observable grid world

▶ Walls block movement – agent/robot
stays in place.

▶ Actions do not always go as planned.
▶ Agent receives rewards each time step:

▶ Small “living” reward/penalty.
▶ Big rewards/penalties at the end.

▶ Goal: maximize sum of (discounted)
rewards

Uncertain movement in a 
grid world

• If there is a wall - agent bounces 
and stays in place

• Rewards each time step:

• Small “living” reward each 
step (can be negative)

• Big rewards at the end

• Goal: maximize sum of 
(discounted) rewards
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MDPs recap

Markov decision processes (MDPs):

▶ Set of states S
▶ Set of actions A
▶ Transitions p(s ′|s, a) or T (s, a, s ′)

▶ Rewards r(s, a, s ′); and discount γ

MDP quantities:

▶ Policy π(s) : S → A
▶ Utility – sum of (discounted) rewards.

▶ Values – expected future utility from a state
(max-node), v(s)

▶ Q-Values – expected future utility from a q-state
(chance-node), q(s, a)

s

s, a

s ′

aπ(s)→ a

s, a, s ′ → r

v(s)

q(s, a)
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Optimal quantities

▶ The optimal policy: π∗(s) – optimal action from
state s

▶ Expected utility/return of a policy.

Uπ(St) = Eπ

[ ∞∑
k=0

γkRt+k+1

]

Best policy π∗ maximizes above.

▶ The value of a state s: v∗(s) – expected utility
starting in s and acting optimally.

▶ The value of a q-state (s, a): q∗(s, a) - expected
utility having taken a from state s and acting
optimally thereafter.

s

s, a

s ′

aπ∗(s)

s, a, s ′ is a transition

q-state

aπ∗(s ′)
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v ∗ and q∗

The value of a q-state (s, a):

q∗(s, a) =
∑
s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′)

]

The value of a state s:

v∗(s) = max
a

q∗(s, a)

s

s, a

s ′

a

p(s ′|s, a)

q-stateq∗(s, a)

v∗(s ′)

v∗(s)
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Maze: V0 = [0, 0, 0]⊤, r(s) = −1, deterministic robot, A = {←, ↑, ↓,→},
γ = 1
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q∗(s, a) =
∑
s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′)

]
v∗(s) = max

a
q∗(s, a)
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What will be V ∗ after first sweep? V ∗1 = [v ∗1 (1), v
∗
1 (2), v

∗
1 (3)]

⊤?
0
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Sweep is meant as the Bellmann update for all states: V ∗
1 = BV ∗

0 . r(s) = −1. Assume sync
version of the algorithm.

A: V ∗
1 = [−1,−1, 9]⊤

B: V ∗
1 = [0, 8, 9]⊤

C: V ∗
1 = [−1, 0, 0]⊤

D: V ∗
1 = [−11, 8, 9]⊤
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What will be V ∗ after second sweep? V ∗2 = [v ∗2 (1), v
∗
2 (2), v

∗
2 (3)]

⊤?
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Sweep is meant as the Bellmann update for all states: V ∗
2 = B(BV ∗

0 ). r(s) = −1. Assume
sync version of the algorithm.

A: V ∗
2 = [−1,−1, 9]⊤

B: V ∗
2 = [−1, 8, 9]⊤

C: V ∗
2 = [−2, 8, 9]⊤

D: V ∗
2 = [7, 8, 9]⊤
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Maze: v ∗ vs. q∗, deterministic robot, A = {←, ↑, ↓,→}

q∗(s, a) =
∑
s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′))

]
v∗(s) = max

a
q∗(s, a)
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Maze: v ∗ vs. q∗, γ = 1, T = [0.8, 0.1, 0.1, 0]
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Value iteration

▶ Bellman equations characterize the optimal values

v∗(s) = max
a∈A(s)

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γv∗(s ′)

]
▶ Value iteration computes them:

Vk+1(s)← max
a∈A(s)

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γVk(s

′)
]

s

s, a

s ′

a

p(s ′|s, a)

q∗(s, a)

v∗(s ′)

v∗(s)

Value iteration is a fixed point solution method.
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Convergence

Vk+1(s)← max
a∈A(s)

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γVk(s

′)
]

▶ Thinking about special cases: deterministic world, γ = 0, γ = 1.
▶ For all s, Vk(s) and Vk+1(s) can be seen as expectimax search trees of depth k and k + 1

Vk(s)
<latexit sha1_base64="mRDrMEb3HQBaQNYSPs0XDj7o148=">AAACKXicZVDLSgNBEJz1GeMr0aOXwSjoJezGgx6DXjwqmBjIhtA726tDZmaXmVklLPkJr/oHfo039eqPOIkRH2loKKq6oaqiTHBjff/Nm5tfWFxaLq2UV9fWNzYr1a22SXPNsMVSkepOBAYFV9iy3ArsZBpBRgKvo8HZWL++Q214qq7sMMOehBvFE87AOqqz1+4PDszhXr9S8+v+ZOgsCKagRqZz0a96q2GcslyiskyAMd3Az2yvAG05Ezgqh7nBDNgAbrDroAKJpldMDI/ovmNimqTarbJ0wv7+KEAaM5SRu5Rgb81/bUz+aBoV3rNUSlBxESYguRjGmEAu7KgITfKN/3qyyUmv4CrLLSr2ZSnJBbUpHfdEY66RWTF0AJjmLhVlt6CBWddmOcxAcxW78NTFLrv6gv9lzYJ2ox4c1f3LRq15Oi2yRHbILjkgATkmTXJOLkiLMCLIA3kkT96z9+K9eu9fp3Pe9Geb/Bnv4xO5VqXl</latexit>

Vk+1(s)
<latexit sha1_base64="ohs+7mNyl9kZ+/sxf5f9s2SIGso="></latexit> ▶ Bottom (last) layer, zeros for Vk(s), true

rewards for Vk+1(s)

▶ Last layer ⟨Rmin,Rmax⟩
▶ But the last layer is γk discounted . . .

▶ hence, Vk and Vk+1 are no more than
γk max |R| apart.

▶ The k increases, the values converge.
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From Values to Policy
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Policy extraction - computing actions from Values
s

s, a

s ′

a

s, a, s ′

▶ Assume we have v∗(s)

▶ What is the optimal action?

▶ We need a one-step expectimax:
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π∗(s) = argmax
a∈A(s)

∑
s′

p(s ′ | s, a)
[
r(s, a, s ′) + γv∗(s ′)

]
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Policy extraction - computing actions from q-Values

▶ Assume we have q∗(s, a)

▶ What is the optimal action?

▶ Just take the (arg) max:

π∗(s) = argmax
a∈A(s)

q∗(s, a)

Actions are easier to extract from
q-values.
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What is wrong with the Value iteration?

Vk+1(s)← max
a∈A(s)

∑
s′

p(s ′ | s, a)
[
r(s, a, s ′) + γVk(s

′)
]

▶ What is complexity of one iteration - over all S states?

▶ When does the iteration stop?

▶ When the does the policy converge?

▶ Can we compute the policy directly?
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Policy evaluation

▶ Assume π(s) given.

▶ How to evaluate (compare)?
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Fixed policy, do what π says

s

s, a

s ′

aπ(s)

s, π(s)

s, a, s ′s, π(s), s ′

q-state

aπ(s ′)

▶ Expectimax trees “max” over all actions . . .

▶ Fixed π for each state → no “max” operator!

18 / 29



Fixed policy, do what π says

s

s, a

s ′

aπ(s)

s, π(s)

s, a, s ′s, π(s), s ′

q-state

aπ(s ′)

▶ Expectimax trees “max” over all actions . . .

▶ Fixed π for each state → no “max” operator!

18 / 29



State values under a fixed policy
s

s, π(s)

s ′

π(s)

s, π(s), s ′

π(s ′)

vπ(s)

vπ(s ′)

▶ Expectimax trees “max” over all actions . . .

▶ Fixed π for each state → no “max” operator!

vπ(s) =
∑

s′ p(s
′ | s, π(s))

[
r(s, π(s), s ′) + γvπ(s ′)

]
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Finding the best policy directly by the Policy iteration method

▶ Start with a random policy.

▶ Step 1: Evaluate it.

▶ Step 2: Improve it.

▶ Repeat steps until policy converges.
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How to evaluate policy? Policy determines state values

vπ(s) =
∑
s′

p(s ′ | s, π(s))
[
r(s, π(s), s ′) + γvπ(s ′)

]
Case: γ = 1 and deterministic robot. What are V π(1),V π(2),V π(3)?
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0

1

1

2

2

3

3

4

4

0 0>>>None None
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Policy iteration - equations

▶ Policy π evaluation. Solve equations or iterate until convergence.

V πi
k+1(s)←

∑
s′

p(s ′ | s, π(s))
[
r(s, π(s), s ′) + γV πi

k (s ′)
]

▶ Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

πi+1(s) = argmax
a∈A(s)

∑
s′

p(s ′ | s, a)
[
r(s, a, s ′) + γV πi

k (s ′)
]
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Policy iteration - a problem(?)

vπ(s) =
∑
s′

p(s ′ | s, π(s))
[
r(s, π(s), s ′) + γvπ(s ′)

]
Case: γ = 1 and deterministic robot. What are V π(1),V π(2),V π(3)?
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Policy iteration algorithm

function policy-iteration(env) returns: policy π
input: env - MDP problem
π(s)← random a ∈ A(s) in all states
V (s)← 0 in all states
repeat ▷ iterate values until no change in policy

V ← policy-evaluation(π,V , env)
unchanged ← True
for each state s in S do

if max
a∈A(s)

∑
s′ P(s

′|a, s)V (s ′) >
∑

s′ P(s
′|s, π(s))V (s ′) then

π(s)← argmax
a∈A(s)

∑
s′ P(s

′|a, s)V (s ′)

unchanged ← False

until unchanged
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Policy vs. Value iteration

▶ Value iteration.
▶ Iteration updates values and policy. (policy only implicitly – can be extracted from values)
▶ No track of policy.

▶ Policy iteration.
▶ Update of values is faster – only one action per state.
▶ New policy from values (slower).
▶ New policy is better or done.

▶ Both methods belong to Dynamic programming realm.

▶ Think (compare) complexities of one sweep (iteration step)
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Value/policy iteration (dynamic programming) vs. direct search

Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′

p(s ′|s, a)Vk(s
′)

▶ value/policy iteration is an off-line method

▶ direct (expectimax) search is an on-line method

▶ sometimes too many states, . . .

▶ but for γ close to 1 the tree is too deep

▶ we will learn about approximate methods (RL)

s

s, a

s ′

a

p(s ′|s, a)

q-stateq∗(s, a)

v∗(s ′)

v∗(s)
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(Multi-armed) Bandits

p(s ′|s, a) and r(s, a, s ′) not known!
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10 armed bandit, what arm to pull?

28 Chapter 2: Multi-armed Bandits

select randomly from among all the actions with equal probability, independently of
the action-value estimates. We call methods using this near-greedy action selection rule
"-greedy methods. An advantage of these methods is that, in the limit as the number of
steps increases, every action will be sampled an infinite number of times, thus ensuring
that all the Qt(a) converge to q⇤(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1� ", that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical e↵ectiveness of
the methods.

Exercise 2.1 In "-greedy action selection, for the case of two actions and " = 0.5, what is
the probability that the greedy action is selected? ⇤

2.3 The 10-armed Testbed

To roughly assess the relative e↵ectiveness of the greedy and "-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k -armed bandit problems with k = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, q⇤(a), a = 1, . . . , 10,

0

1

2

3

-3

-2

-1

q⇤(1)

q⇤(2)

q⇤(3)

q⇤(4)

q⇤(5)

q⇤(6)

q⇤(7)

q⇤(8)

q⇤(9)

q⇤(10)

Reward
distribution

1 2 63 54 7 8 9 10

Action
Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q⇤(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean q⇤(a) unit variance
normal distribution, as suggested by these gray distributions.
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