Sequential decisions under uncertainty Policy iteration

Tomáš Svoboda, Matěj Hoffmann a Petr Pošík

Vision for Robots and Autonomous Systems, Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University in Prague

March 28, 2024

Recap: Unreliable actions in observable grid world

- Walls block movement agent/robot stays in place.
- Actions do not always go as planned.
- Agent receives rewards each time step:
 - Small "living" reward/penalty.
 - Big rewards/penalties at the end.
- Goal: maximize sum of (discounted) rewards

MDPs recap

Markov decision processes (MDPs):

- \blacktriangleright Set of states ${\cal S}$
- \blacktriangleright Set of actions ${\cal A}$
- Transitions p(s'|s, a) or T(s, a, s')
- Rewards r(s, a, s'); and discount γ

MDP quantities:

- $\blacktriangleright \text{ Policy } \pi(s): S \to \mathcal{A}$
- Utility sum of (discounted) rewards.
- Values expected future utility from a state (max-node), v(s)
- Q-Values expected future utility from a q-state (chance-node), q(s, a)

MDPs recap

Markov decision processes (MDPs):

- \blacktriangleright Set of states ${\cal S}$
- \blacktriangleright Set of actions ${\cal A}$
- Transitions p(s'|s, a) or T(s, a, s')
- Rewards r(s, a, s'); and discount γ
- MDP quantities:
 - ▶ Policy $\pi(s) : S \to A$
 - Utility sum of (discounted) rewards.
 - Values expected future utility from a state (max-node), v(s)
 - Q-Values expected future utility from a q-state (chance-node), q(s, a)

Optimal quantities

- The optimal policy: π*(s) optimal action from state s
- Expected utility/return of a policy.

$$U^{\pi}(S_t) = \mathsf{E}^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

Best policy π^* maximizes above.

- The value of a state s: v*(s) expected utility starting in s and acting optimally.
- The value of a q-state (s, a): q*(s, a) expected utility having taken a from state s and acting optimally thereafter.

Optimal quantities

- The optimal policy: π*(s) optimal action from state s
- Expected utility/return of a policy.

$$U^{\pi}(S_t) = \mathsf{E}^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

Best policy π^* maximizes above.

- The value of a state s: v*(s) expected utility starting in s and acting optimally.
 - The value of a q-state (s, a): q*(s, a) expected utility having taken a from state s and acting optimally thereafter.

Optimal quantities

- The optimal policy: π*(s) optimal action from state s
- Expected utility/return of a policy.

$$U^{\pi}(S_t) = \mathsf{E}^{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \right]$$

Best policy π^* maximizes above.

- The value of a state s: v*(s) expected utility starting in s and acting optimally.
- The value of a q-state (s, a): q*(s, a) expected utility having taken a from state s and acting optimally thereafter.

 v^* and q^*

The value of a q-state (s, a):

$$q^*(s,a) = \sum_{s'} p(s'|a,s) \left[r(s,a,s') + \gamma v^*(s') \right]$$

The value of a state *s*:

$$v^*(s) = \max_a q^*(s, a)$$

 v^* and q^*

The value of a q-state (s, a):

$$q^*(s,a) = \sum_{s'} p(s'|a,s) \left[r(s,a,s') + \gamma v^*(s') \right]$$

The value of a state s:

$$v^*(s) = \max_a q^*(s, a)$$

 v^* and q^*

The value of a q-state (s, a):

$$q^*(s,a) = \sum_{s'} p(s'|a,s) \left[r(s,a,s') + \gamma v^*(s') \right]$$

The value of a state s:

$$v^*(s) = \max_a q^*(s, a)$$

Maze: $V_0 = [0, 0, 0]^{\top}$, r(s) = -1, deterministic robot, $\mathcal{A} = \{\leftarrow, \uparrow, \downarrow, \rightarrow\}$, $\gamma = 1$ 0 1 2 3 4

$$q^{*}(s,a) = \sum_{s'} p(s'|a,s) [r(s,a,s') + \gamma v^{*}(s')]$$

 $v^{*}(s) = \max_{a} q^{*}(s,a)$

What will be V^* after first sweep? $V_1^* = [v_1^*(1), v_1^*(2), v_1^*(3)]^\top$? 0 1 2 3 4

Sweep is meant as the Bellmann update for all states: $V_1^* = BV_0^*$. r(s) = -1. Assume sync version of the algorithm.

A:
$$V_1^* = [-1, -1, 9]^\top$$

B: $V_1^* = [0, 8, 9]^\top$
C: $V_1^* = [-1, 0, 0]^\top$
D: $V_1^* = [-11, 8, 9]^\top$

What will be V^* after second sweep? $V_2^* = [v_2^*(1), v_2^*(2), v_2^*(3)]^\top$? 0 1 2 3 4

Sweep is meant as the Bellmann update for all states: $V_2^* = B(BV_0^*)$. r(s) = -1. Assume sync version of the algorithm.

A: $V_2^* = [-1, -1, 9]^\top$ B: $V_2^* = [-1, 8, 9]^\top$ C: $V_2^* = [-2, 8, 9]^\top$ D: $V_2^* = [7, 8, 9]^\top$ Maze: v^* vs. q^* , deterministic robot, $\mathcal{A} = \{\leftarrow, \uparrow, \downarrow, \rightarrow\}$

0

0

$$q^{*}(s,a) = \sum_{s'} p(s'|a,s) [r(s,a,s') + \gamma v^{*}(s'))]$$

$$v^{*}(s) = \max_{a} q^{*}(s,a)$$

Maze: v^* vs. q^* , $\gamma = 1$, T = [0.8, 0.1, 0.1, 0]

0.81	0.87	0.92	1.00	0.78 0.83 0.88 0.00 0.77 0.81 0.78 0.87 0.81 0.92 0.00 0.00 0.74 0.83 0.68 0.00 0.00 0.00
0.76		0.66	-1.00	0.76 0.72 0.72 0.68 0.64 0.69 0.00 0.00 0.00 0.00 0.00
0.71	0.66	0.61	0.39	0.71 0.62 0.65 0.66 0.62 0.55 0.74 0.74 0.21 0.66 0.59 0.21

$$q^{*}(s, a) = \sum_{s'} p(s'|a, s) [r(s, a, s') + \gamma v^{*}(s'))]$$

$$v^{*}(s) = \max_{a} q^{*}(s, a)$$

Value iteration

Bellman equations characterize the optimal values

$$v^*(s) = \max_{a \in A(s)} \sum_{s'} p(s'|s, a) \left[r(s, a, s') + \gamma v^*(s')
ight]$$

► Value iteration **computes** them:

$$V_{k+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma V_k(s') \right]$$

Value iteration is a fixed point solution method.

Convergence

$$V_{k+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} p(s'|s, a) \left[r(s, a, s') + \gamma V_k(s') \right]$$

- Thinking about special cases: deterministic world, $\gamma = 0$, $\gamma = 1$.
- For all s, $V_k(s)$ and $V_{k+1}(s)$ can be seen as expectimax search trees of depth k and k+1

- Bottom (last) layer, zeros for V_k(s), true rewards for V_{k+1}(s)
- ► Last layer $\langle R_{min}, R_{max} \rangle$
- But the last layer is γ^k discounted . . .
- hence, V_k and V_{k+1} are no more than $\gamma^k \max |R|$ apart.
- ► The *k* increases, the values converge.

From Values to Policy

Policy extraction - computing actions from Values

- Assume we have v*(s)
- What is the optimal action?
- We need a one-step expectimax:

 $\pi^*(s) = \underset{a \in \mathcal{A}(s)}{\arg \max} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma v^*(s') \right]$

Policy extraction - computing actions from Values

- Assume we have $v^*(s)$
- What is the optimal action?
- ▶ We need a one-step expectimax:

$$\pi^*(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg\,max}} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma v^*(s') \right]$$

Policy extraction - computing actions from q-Values

- Assume we have $q^*(s, a)$
- What is the optimal action?
- Just take the (arg) max: $\pi^*(s) = rg\max_{a \in \mathcal{A}(s)} q^*(s, a)$

Actions are easier to extract from *q*-values.

2

0

1

Policy extraction - computing actions from q-Values

- Assume we have $q^*(s, a)$
- What is the optimal action?
- ▶ Just take the (arg) max: $\pi^*(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg max}} q^*(s, a)$

Actions are easier to extract from *q*-values.

0

1

What is wrong with the Value iteration?

$$V_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}(s)} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k(s')
ight]$$

- What is complexity of one iteration over all S states?
- When does the iteration stop?
- When the does the policy converge?
- Can we compute the policy directly?

Policy evaluation

- Assume $\pi(s)$ given.
- ► How to evaluate (compare)?

Fixed policy, do what π says

Expectimax trees "max" over all actions ...

Fixed policy, do what π says

Expectimax trees "max" over all actions . .

Fixed π for each state \rightarrow no "max" operator!

State values under a fixed policy

Expectimax trees "max" over all actions

 $^\circ$ Fixed π for each state ightarrow no "max" operator!

 $v^{\pi}(s) = \sum_{s'} p(s' \mid s, \pi(s)) [r(s, \pi(s), s') + \gamma v^{\pi}(s')]$

State values under a fixed policy

Expectimax trees "max" over all actions . .

Fixed π for each state \rightarrow no "max" operator!

 $v^{\pi}(s) = \sum_{s'} p(s' \mid s, \pi(s)) [r(s, \pi(s), s') + \gamma v^{\pi}(s')]$

Finding the best policy directly by the Policy iteration method

- Start with a random policy.
- Step 1: Evaluate it.
- Step 2: Improve it.
- Repeat steps until policy converges.

How to evaluate policy? Policy determines state values

$$\boldsymbol{v}^{\pi}(\boldsymbol{s}) = \sum_{\boldsymbol{s}'} \boldsymbol{p}(\boldsymbol{s}' \mid \boldsymbol{s}, \pi(\boldsymbol{s})) \left[\boldsymbol{r}(\boldsymbol{s}, \pi(\boldsymbol{s}), \boldsymbol{s}') + \gamma \boldsymbol{v}^{\pi}(\boldsymbol{s}') \right]$$

Case: $\gamma = 1$ and deterministic robot. What are $V^{\pi}(1), V^{\pi}(2), V^{\pi}(3)$?

0 1 2 3

Policy iteration - equations

> Policy π evaluation. Solve equations or iterate until convergence.

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$\pi_{i+1}(s) = \underset{a \in \mathcal{A}(s)}{\arg \max} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k^{\pi_i}(s') \right]$$

Policy iteration - a problem(?)

$$\mathbf{v}^{\pi}(s) = \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma \mathbf{v}^{\pi}(s')
ight]$$

Case: $\gamma = 1$ and deterministic robot. What are $V^{\pi}(1), V^{\pi}(2), V^{\pi}(3)$?

0 1 2 3

4

Policy iteration algorithm

```
function POLICY-ITERATION(env) returns: policy \pi
    input: env - MDP problem
    \pi(s) \leftarrow random \ a \in A(s) in all states
    V(s) \leftarrow 0 in all states
                                                                \triangleright iterate values until no change in policy
    repeat
         V \leftarrow \text{POLICY-EVALUATION}(\pi, V, \text{env})
         unchanged \leftarrow True
         for each state s in S do
             if \max_{a\in A(s)}\sum_{s'}P(s'|a,s)V(s')>\sum_{s'}P(s'|s,\pi(s))V(s') then
                 \pi(s) \leftarrow \arg \max \sum_{s'} P(s'|a,s) V(s')
                             a \in A(s)
                  unchanged \leftarrow False
    until unchanged
```

24 / 29

Policy vs. Value iteration

Value iteration.

- Iteration updates values and policy. (policy only implicitly can be extracted from values)
- No track of policy.
- Policy iteration.
 - Update of values is faster only one action per state.
 - New policy from values (slower).
 - New policy is better or done.
- Both methods belong to Dynamic programming realm.
- Think (compare) complexities of one sweep (iteration step)

Policy vs. Value iteration

Value iteration.

- Iteration updates values and policy. (policy only implicitly can be extracted from values)
- No track of policy.
- Policy iteration.
 - Update of values is faster only one action per state.
 - New policy from values (slower).
 - New policy is better or done.
- Both methods belong to Dynamic programming realm.
- Think (compare) complexities of one sweep (iteration step)

Policy vs. Value iteration

Value iteration.

- Iteration updates values and policy. (policy only implicitly can be extracted from values)
- No track of policy.
- Policy iteration.
 - Update of values is faster only one action per state.
 - New policy from values (slower).
 - New policy is better or done.
- Both methods belong to Dynamic programming realm.
- Think (compare) complexities of one sweep (iteration step)

Value/policy iteration (dynamic programming) vs. direct search

$$V_{k+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} p(s'|s, a) V_k(s')$$

- value/policy iteration is an off-line method
- direct (expectimax) search is an *on-line* method
- sometimes too many states, ...
- \blacktriangleright but for γ close to 1 the tree is too deep
- we will learn about approximate methods (RL)

References

Further reading: Chapter 17 of [1] however, policy iteration is quite compact there. More detailed discussion can be found in chapter Dynamic programming in [2] with slightly different notation, though. This lecture has been also greatly inspired by the 9th lecture of CS 188 at http://ai.berkeley.edu as it convincingly motivates policy search and offers an alternative convergence proof of the value iteration method.

- [1] Stuart Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach*. Prentice Hall, 3rd edition, 2010. <u>http://aima.cs.berkeley.edu/</u>.
- [2] Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning; an Introduction*. MIT Press, 2nd edition, 2018. http://www.incompleteideas.net/book/the-book-2nd.html.

(Multi-armed) Bandits

p(s'|s, a) and r(s, a, s') not known!

(Multi-armed) Bandits

p(s'|s, a) and r(s, a, s') not known!

10 armed bandit, what arm to pull?

