
Paralelní a distribuované výpočty
(B4B36PDV)

Jakub Mareček
jakub.marecek@fel.cvut.cz

Artificial Intelligence Center
Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

What comes next?

What comes next?
C++

C++20:

• jthread

• Coroutines

• atomic_ref

• atomic<shared_ptr<T>>

• Floating point atomics

• Waiting on atomics

• Semaphores, latches, barriers

C++23:

• print, println ;-)

• std::generator

C++26:

• Linear algebra!

What comes next?
Josuttis

• Nicolai M. Josuttis:
C++20 - The Complete Guide

• http://cppstd20.com/

• Chapters:
• 12: jthread

• 13: Concurrency

• 14: Coroutines

• See also
https://en.cppreference.com/
w/cpp/thread

https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/thread

What comes next?
https://github.com/jmarecek/parallel-cpp/blob/main/static/2024March6.pdf

What comes next?

• Structuring code
• Thread
• Jthread
• Coroutines

• Atomic variables
• Mutexes and locks
• Barrier

• For each
• Reduce
• Merge

• Structuring code
• Coroutines

Structuring code
Threads

• C++11 had a very basic support for threads, in terms of std::thread of
header thread.

• The thread starts running once the constructor is called.
• The object is not CopyConstructible nor CopyAssignable.

The challenge in C++11 threads:
• one needs to call join or detach prior to the destructor being called. If

neither was called, the program was std::aborted.
• Prior to calling either, one needs to check whether the thread is joinable().
• At the same time, it is almost impossible to handle exceptions while being

able to call join correctly.
• The use of the C++11 thread is thus considered harmful and we will present

only two short examples.

Structuring code
Threads

• The use of the C++11 thread is thus considered harmful and we will present
only two short examples.

Structuring code
Threads

Structuring code
C++20 jthread

• C++20 adds a new class jthread (``joining threads''), which does not require a
call to join or detach. Instead, the destructor waits for completion of the code
(``joins'') automatically.

This is an example of the
``resource acquisition is
initialization'' idiom.
In RAII, the resource allocation is
tied to an object's lifetime and is
hence a class invariant.
In a constructor, one allocates
the resources.
In a destructor, one releases the
resources.
There is no risk of a resource
leak.

• Notice that the example would very like result in abnormal program
termination, if we changed jthread to thread. (Why?)

Structuring code
C++20 jthread

• When we use standard output, it is prudent to wrap it in a syncstream
(new addition in C++20):

Structuring code
C++20 jthread

• Rather commonly, one uses the lambda function to define the thread.

(This is the lambda [capture](args).)

Structuring code
C++20 jthread

• When we pass the first argument of type std::stop_token token, we request
the thread to stop its execution by calling request_stop() on the jthread
object:

This is another example of
``resource acquisition is
initialization’’ (RAII).

request_stop()

Structuring code
C++20 jthread

One can define
std::stop_callback
object inside the
thread, whose
constructor takes the
stop token and a
function.

(Notice the flag is
“captured”.)

The function gets
executed, when the
thread is requested
to stop via the
std::stop_token.

Structuring code
C++20 jthread

One can define
std::stop_callback
object inside the
thread, whose
constructor takes the
stop token and a
function.

(Notice the flag is
“captured”.)

The function gets
executed, when the
thread is requested
to stop via the
std::stop_token.

• Within a particular thread, one may utilize multiple
coroutines, which can be seen as subroutines that can run in
multiple steps, but sometimes can serve as a light-weight
alternative to hardware threads.

Structuring code
Coroutines

https://blog.eiler.eu/posts/20210512/images/coroutines.png

Structuring code
Coroutines

In C++23, class template std::generator in header generator presents a view of
the elements yielded by the evaluation of a coroutine:

Needs
-std=gnu++2b
or
-std=c++2b

https://godbolt.org/z/
Kn8s48aqT

Structuring code
Coroutines

Later, we will see
how to implement a
generator ourselves.

What comes next?

• Structuring code
• Thread
• Jthread
• Coroutines

• Atomic variables
• Mutexes and locks
• Barrier

• For each
• Reduce
• Merge

• Structuring code
• Coroutines

Synchronisation Primitives
Atomic Variables

Since C++11, there is an excellent support for atomic variables in header
<atomic>. The primary template can be instantiated with types that are
TriviallyCopyable, CopyConstructible, and CopyAssignable.

Synchronisation Primitives
Atomic Variables

Since C++11, there is an excellent support for atomic variables in header
<atomic>. The primary template can be instantiated with types that are
TriviallyCopyable, CopyConstructible, and CopyAssignable.

Synchronisation Primitives
Atomic Variables

Synchronisation Primitives
Barrier

• Since C++20, there is support for
barriers in header <barrier>.

• The constructor takes an integer
value, which is the number of
threads that the barrier is
expected to block.

• arrive_and_wait(): blocking wait
until the number of threads arrive
at the same spot

• arrive_and_drop(): decrements
the initial expected count for all
uses by one, as if one thread
could never reach the barrier
subsequently. This can be very
useful in error management.

Synchronisation Primitives
Barrier

More complicated uses of barriers may use the template parameter
CompletionFunction and have a callable executed whenever the barrier hits 0:

Synchronisation Primitives
Mutexes and Locks

• Standard Template Library in header <mutex> provides multiple mutexes (of
type BasicLockable that implement lock and unlock methods): mutex,
recursive_mutex, timed_mutex, recursive_timed_mutex, and unique_lock.

• A good practice for the use of mutexes is to lock them via the RAII idiom.
Since C++11, this is available as std::unique_lock and std::lock_guard, and
since C++17 scoped_lock in header <mutex>.

• Crucially, using scoped_lock provides the ability to lock multiple mutexes at
once, avoiding deadlock.

• One may hence advise to use one or more mutex with a scoped_lock on top.

Synchronisation Primitives
Mutexes and Locks

Synchronisation Primitives
Mutexes and Locks

What comes next?

• Structuring code
• Thread
• Jthread
• Coroutines

• Atomic variables
• Mutexes and locks
• Barrier

• For each
• Reduce
• Merge

• Structuring code
• Coroutines

• Structuring code
• Thread
• Jthread
• Coroutines RAII

• Atomic variables
• Mutexes and locks
• Barrier

• For each
• Reduce
• Merge

Algorithms in the Standard Template Library
For each

Since C++17, there is an excellent Parallel Standard Template Library in
header <algorithm>.

The most useful algorithm from the Standard Template Library (STL) in terms
of parallel programming is surely for each. As in the serial version of STL, the
callable within for each is permitted to change the state of elements, if the
underlying range is mutable, but cannot invalidate iterators.

Algorithms in the Standard Template Library
Reduce

• Similarly useful is the reduce operation (also known as fold, accumulate,
aggregate, compress, or inject).

• In Map Reduce, one applies an associative operation to each piece of data to
obtain a partial result, and then obtains the final result by applying the same
associative operation to the partial results.

• The binary-tree reduction makes it possible to utilize O(log(n)) rounds of
computation on n processors.

Algorithms in the Standard Template Library
Merge

Finally, in implementing parallel sorting algorithms, we will utilize the parallel
merge operation:

What comes next?

• Structuring code
• Thread
• Jthread
• Coroutines

• Atomic variables
• Mutexes and locks
• Barrier

• For each
• Reduce
• Merge

• Structuring code
• Coroutines

• Structuring code
• Thread
• Jthread
• Coroutines RAII

• Atomic variables
• Mutexes and locks
• Barrier

• For each
• Reduce
• Merge

• Coroutines can be called,
can return when completed, but also
can suspend themselves, yielding control and partial results,
and be resumed by another co-routine.

• Typical uses involve generators and factories and various
other concepts within ``lazy evaluation'', as well as event-
driven architectures within cooperative multi-tasking.

• That is: two coroutines within one thread never run in
parallel, but one can have the runs of two or more coroutines
interleaved. We can suspend a co-routine in one thread and
resume it within another thread.

Structuring code
Coroutines

Structuring code
Coroutines

There are three new keywords:
• co_await tries to suspends computation and block the co-

routine until the computation is resumed by another coroutine
calling ``resume'' method of the present coroutine. In the
process, it tests whether it is possible to suspend the
computation using an awaiter and, if so, saves all local variables
to a heap-allocated handle.

• co_yield yields a value and suspends computation as above,
and

• co_return returns a value. (There is no notion of an optional
return type in-built.)

Structuring code
Coroutines

A difficulty in using coroutines is the fact that the coroutine may
live longer than the scope it has been called from. It is hence not
advisable to pass by reference, except perhaps std::ref or std::cref.

One can either pass by value or pass, e.g., std::unique_ptr:

Structuring code
Coroutines

Defining the coroutine in C++20 requires:
• defining the behaviour of the coroutine, which is known as a

promise (different from std::promise), and requires one returns
the type used to access the state of the coroutine on the heap,
which is known as the handle,

• defining how to store the state of the coroutine on the heap,
using template class std::coroutine_handle parametrized by the
promise

Clearly, one needs to declare one, define the other, and then return
to declare the first one. We will see how to do this later.

Optionally, we can also define an awaiter, which controls
suspension and resumption behaviour.

Structuring code
Coroutines

A promise class implements:
• coroutine get_return_object() is called to

initialize the coroutine and create the
coroutine handle

• std::suspend_always initial_suspend(),
suggests whether the coroutine starts right
after initialization
std::suspend_always final_suspend() noexcept,
which can be rather formulaic
std::suspend_always()

• void return_void() or void return_value(const
auto& value), which is called upon reaching
the end of the coroutine and upon reaching
co_return. The latter (return_value) often just
stores the result locally.

• void unhandled_exception(), which can be
rather formulaic std::terminate(), or can save
the exception via std::current_exception().

Structuring code
Coroutines

Structuring code
Awaiters

Finally, let us consider awaiters, which can be called when a coroutine is
suspended or resumed.
Key methods of an awaiter include:
• await_ready() is called immediately before suspension of a coroutine. If it

returns true, the coroutine will not be suspended.
• await_suspend(handle) is called immediately after the suspension of the

coroutine. The handler of type std::coroutine_handle can be used to pass
the state of the coroutine (e.g., to another thread).

• await_resume() is called when the coroutine is resumed after a successful
suspension. If it returns a value, this will be returned by the co_await
routine.

The awaiters we have seen so far (std::suspend_never() and
std::suspend_always()) returned boolean constants in await_ready()

Structuring code
Awaiters

By defining await_transform() in the promise type, the compiler will use
co_await promise.await_transform(<expr>) instead of any call of co_await
<expr> in the coroutine.

Structuring code
Our Own Generator

Structuring code
Our Own Generator

Structuring code
Our Own Generator

Structuring code
Our Own Message-Passing

Structuring code
Our Own Message-Passing

Structuring code
Our Own Message-Passing

What have we seen so far?

• Structuring code
• Thread
• Jthread
• Coroutines

• Atomic variables
• Mutexes and locks
• Barrier

• For each
• Reduce
• Merge

• Structuring code
• Coroutines

