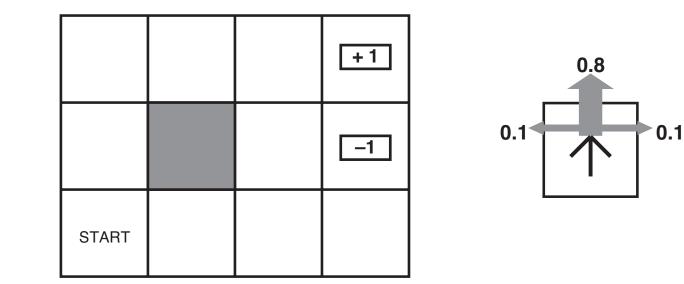
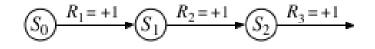
MDP Introduction

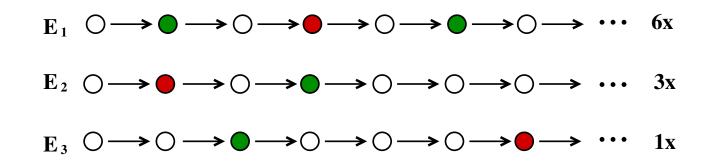
F. Gama, S. Dantu

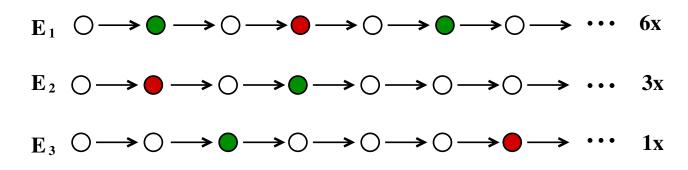


We have:

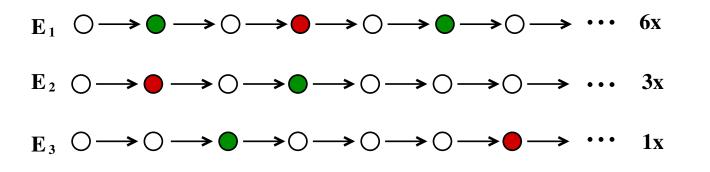
- State: S
- \bullet Action: A
- Transition model: $T(s, a, s') \equiv P(s, a, s')$, we are in state s, make action a, and arrive in state s'
- Reward: r(s), r(s, a), r(s, a, s') immediate reward/evaluation
- Policy: agent/robot behaviour strategy
- Episode: sequence of states with rewards
- Return/Utility sequence: $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$



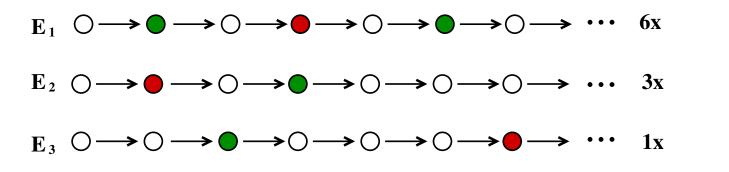




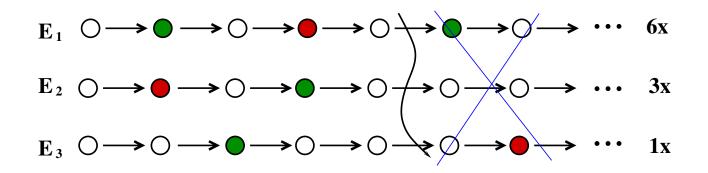
- 1. Evaluation of the state in the sequence:
 - A: State Value V(s)
 - B: Immediate reward r(s)
 - C: Return/Utility G
 - D: Policy π



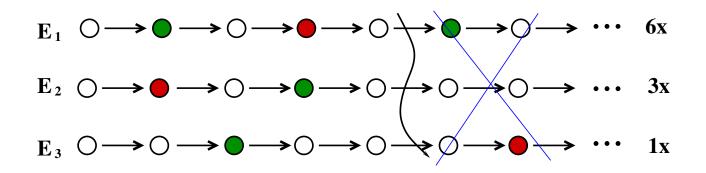
- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s) $\bigcirc 0 \quad \bigcirc 1 \quad \bigcirc -0.3$
 - A: State Value V(s)
 - B: Immediate reward $r(s) \Leftarrow$
 - C: Return/Utility G
 - D: Policy π



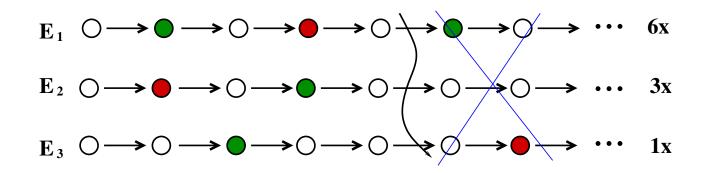
- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s) $\bigcirc 0 \quad \bigcirc 1 \quad \bigcirc -0.3$
- 2. Episode length::
 - A: Infinite
 - B: Finite
 - C: T = 1000
 - D: T = 4



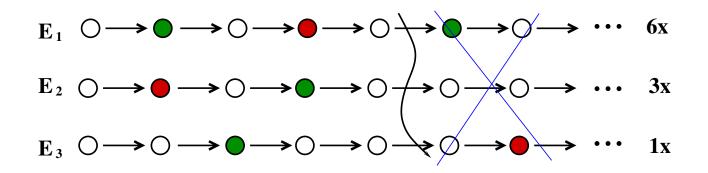
- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s) $\bigcirc 0 \quad \bigcirc 1 \quad \bigcirc -0.3$
- 2. Episode length: We'll chose T = 4
 - A: Infinite \Leftarrow B: Finite \Leftarrow C: T = 1000 \Leftarrow
 - D: T = 4 \Leftarrow



- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s) $\bigcirc 0 \quad \bigcirc 1 \quad \bigcirc -0.3$
- 2. Episode length: We chose T = 4
- 3. Discount factor: γ
 - A: 1
 - B: 5
 - C: 0.8
 - D: 0.1

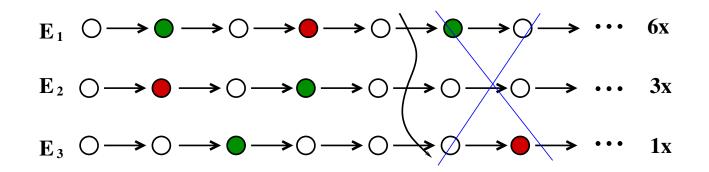


- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s) $\bigcirc 0 \quad \bigcirc 1 \quad \bigcirc -0.3$
- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
 - A: 1 ⇐
 - B: 5
 - C: $0.8 \quad \Leftarrow$
 - D: 0.1 \Leftarrow



-0.3

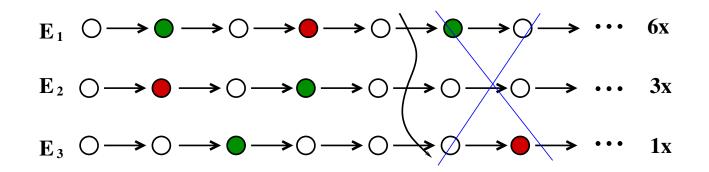
- 1. Evaluation of the state in the sequence: Immediate reward, reward function r(s) $\bigcirc 0 \quad \bigcirc 1$
- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility G_t
 - A: $\sum_{n=1}^{T} \gamma^{n}$ B: $\prod_{n=1}^{T} \gamma^{n}$ C: γr D: $\prod_{n=1}^{T} \gamma^{n} r_{n}$ E: $\sum_{n=0}^{T} \gamma^{n} r_{n}$



What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

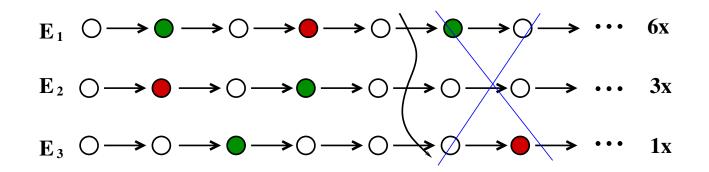
- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$
 - A: $\sum_{n=1}^{T} \gamma^{n}$ B: $\prod_{n=1}^{T} \gamma^{n}$ C: γr D: $\prod_{n=1}^{T} \gamma^{n} r_{n}$ E: $\sum_{n=0}^{T} \gamma^{n} r_{n}$ \Leftarrow



What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$
 - A: $G(E_1) = 0.7$
 - B: $G(E_1) = 0.65$
 - C: $G(E_1) = 0.95$
 - D: $G(E_1) = 0.8$

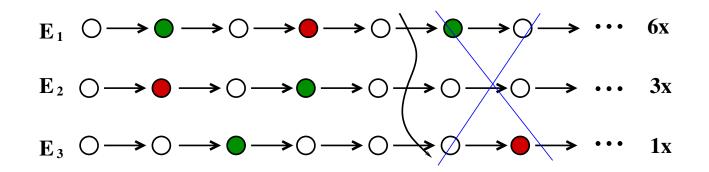


What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

 $\bigcirc 0 \bigcirc 1 \bigcirc -0.3$

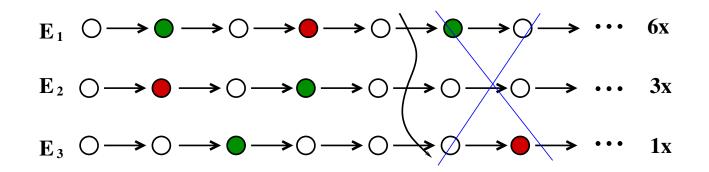
- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$
 - $G(E_1) = 0.65$ A: $G(E_1) = 0.7$ B: $G(E_1) = 0.65 = 0.8^0 \cdot 0 + 0.8^1 \cdot 1 + 0.8^2 \cdot 0 + 0.8^3 \cdot (-0.3) + 0.8^4 \cdot 0 \quad \Leftarrow$ C: $G(E_1) = 0.95$ D: $G(E_1) = 0.8$



What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

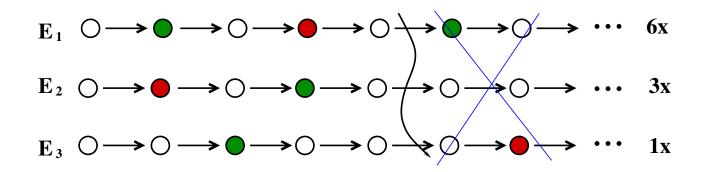
- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$
 - $G(E_1) = 0.65$
 - A: $G(E_2) = 0.272$
 - B: $G(E_2) = 0.4$
 - C: $G(E_2) = 0.7$
 - D: $G(E_2) = 0.99$



What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$
 - $G(E_1) = 0.65, \ G(E_2) = 0.272$ A: $G(E_2) = 0.272 = 0.8^1 \cdot (-0.3) + 0.8^3 \cdot 1 \quad \Leftarrow$ B: $G(E_2) = 0.4$ C: $G(E_2) = 0.7$ D: $G(E_2) = 0.99$

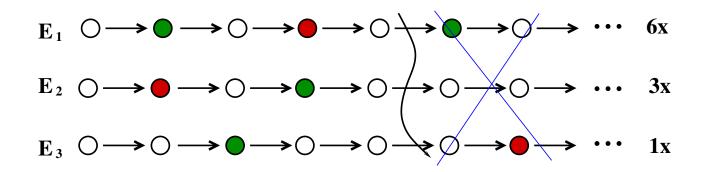


What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

 $\bigcirc 0 \bigcirc 1 \bigcirc -0.3$

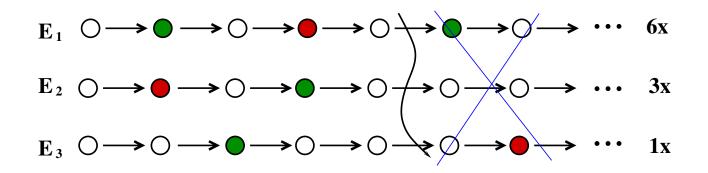
- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$
 - $G(E_1) = 0.65, \ G(E_2) = 0.272$
 - A: $G(E_3) = -0.3$
 - B: $G(E_3) = 0.7$
 - C: $G(E_3) = 0.64$
 - D: $G(E_3) = 0.8$



What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$
 - $G(E_1) = 0.65, G(E_2) = 0.272, G(E_3) = 0.64$ A: $G(E_3) = -0.3$ B: $G(E_3) = 0.7$ C: $G(E_3) = 0.64 = 0.8^2 \cdot 1$ \Leftarrow
 - D: $G(E_3) = 0.8$



What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

 $\bigcirc 0 \bigcirc 1 \bigcirc -0.3$

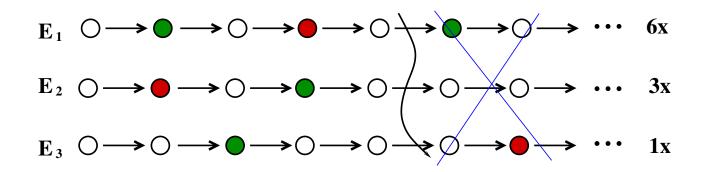
- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$

•
$$G(E_1) = 0.65, G(E_2) = 0.272, G(E_3) = 0.64$$

5. Calculation for the whole policy:

A:
$$\sum_{e=1}^{E} \sum_{n=0}^{T} \gamma^{n} r_{n}$$

B: $\prod_{e=1}^{E} \sum_{n=0}^{T} \gamma^{n} r_{n}$
C: $\sum_{e=1}^{E} p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n}$
D: $\max p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n}$



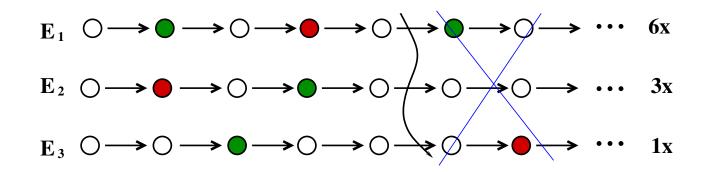
What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$

•
$$G(E_1) = 0.65, G(E_2) = 0.272, G(E_3) = 0.64$$

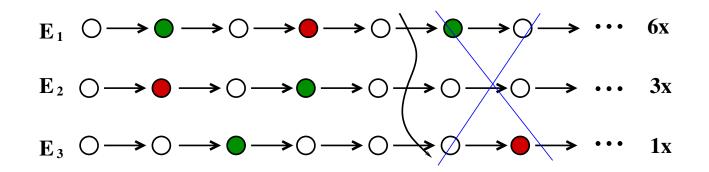
- 5. Calculation for the whole policy: $\sum_{e=1}^{E} p_e \sum_{n=0}^{T} \gamma^n r_n$
 - A: $\sum_{e=1}^{E} \sum_{n=0}^{T} \gamma^{n} r_{n}$ B: $\prod_{e=1}^{E} \sum_{n=0}^{T} \gamma^{n} r_{n}$ C: $\sum_{e=1}^{E} p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n}$ D: $\max p_{e} \sum_{n=0}^{T} \gamma^{n} r_{n}$



What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$
 - $G(E_1) = 0.65, G(E_2) = 0.272, G(E_3) = 0.64$
- 5. Calculation for the whole policy: $\sum_{e=1}^{E} p_e \sum_{n=0}^{T} \gamma^n r_n$
 - A: 0.535
 - B: 1.562
 - C: 1
 - D: 0.86



What do we need?

1. Evaluation of the state in the sequence: Immediate reward, reward function r(s)

 $\bigcirc 0 \quad \bigcirc 1 \quad \bigcirc -0.3$

- 2. Episode length: We chose T = 4
- 3. Discount factor: $0 \le \gamma \le 1$, we'll chose $\gamma = 0.8$
- 4. Episode value calculation: return/utility $G_t = \sum_{n=0}^T \gamma^n r_n$

•
$$G(E_1) = 0.65, \ G(E_2) = 0.272, \ G(E_3) = 0.64$$

5. Calculation for the whole policy: $\sum_{e=1}^{E} p_e \sum_{n=0}^{T} \gamma^n r_n = 0.535$ A: $0.535 = 0.6 \cdot 0.65 + 0.3 \cdot 0.272 + 0.1 \cdot 0.64 \iff$ B: 1.562 C: 1

D: 0.86