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Outline

I Mathematics of uncertainty

I Random Experiment, Outcomes, Sample Space, Events, . . .

I Probability, Conditional Probability, Independence

I Random Variable, Expectation
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Uncertainty is everywhere

I The probability of rain tomorrow is 70%.

I What are my chances to win in a lottery?

I I was tested positive for disease X, am I really sick?

I Given testimonies X, Y, and Z, is the suspect guilty?

I Unemployment changed by X, what will be the inflation?

I How will the stock prices evolve?

I We chose action X, how much will the robot move?

I What is the probability that the person on the photo is person X?

I How long will it take me to get to work if I take the tram?

I . . .

We need a mathematical description . . .
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(Random) Experiment

Experiment :

I Vaguely: the act of observing certain feature of the world
I A procedure that

I can be repeated many times under the same conditions and
I has a well-defined set of possible outcomes.

I Deterministic experiment has only a single possible outcome.

I Random experiment has more than one possible outcomes.

I Before executing random experiment, we do not know the actual outcome. After
execution this uncertainty vanishes.
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Example 1: Three tosses of a coin (Head/Tails)

What is the probability of three heads?

Sample space (a set!) S of all elementary events (experiment outcomes) . How big is it?

A 32

B 23

C 2 · 3
D ∞

Events :

I A - 3× head, P(A) = ?

I B - 3× the same symbol, P(B) = ?

I C - at least one tail, P(C ) = ? . . .
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(Random) Events /(Náhodné) jevy/
Elementary events /elementárńı jevy/ are all possible, mutually exclusive outcomes of

certain experiment.

The set of elementary events is called a sample space /množina elementárńıch jev̊u/ ,
denoted as S.

An event /jev/ is any subset of the sample space, A ⊆ S.

I Event A occured if the experiment outcome
belongs to A.

I An event is any statement about the
experiment outcome for which we can decide if
it occured or not.
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Naive probability (Bernoulli/Laplace)

P(A) =
|A|
|S|

=
number of outcomes favorable to A

total number of outcomes in S

I Limited to equally likely outcomes/elementary events. (Equally likely?)

I It does not allow for infinite sample spaces, geometric probability, . . .

I Combinatorics! Counting (variations, permutations, combinations, . . . )
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Events and their combinations

Important events:

I Certain event : S, 1

I Impossible event : ∅, 0

Event combinations:

I Conjunction (A and B): A ∩ B

I Disjuction (A or B): A ∪ B

I Complementary event /jev opačný/ to A: Ac = S \ A
I A⇒ B: A ⊆ B

I Disjoint events /jevy neslučitelné/ : A1, . . . ,An :
⋂
i≤n

Ai = ∅

I Mutually exclusive events /Jevy po dvou neslučitelné = vzájemně se vylučuj́ıćı/ :

A1, . . . ,An : ∀i , j ∈ {1, . . . , n}, i 6= j : Ai ∩ Aj = ∅
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Partition of sample space /Úplný systém jev̊u/

Partition of sample space S /Úplný systém jev̊u/ is composed of events B1, . . . ,Bn if they

are mutually exclusive and
n⋃

i=1
Bi = S.

I The sample space S is its own partition by definition.

I Events {C ,C c} form a partition: C ∩ C c = ∅ and C ∪ C c = S.

Why is the partition of S an important concept?
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Axiomatic probability (Kolmogorov)

I Sample space S may be infinite.

I Elementary events do not have to be equally likely.
I Axiomatic:

1. state a set of constraints the probability function must obey
2. find a function that fulfills them (next slides)
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Definition of probability

I Probability function /pravděpodobnostńı funkce/ P is a function that assigns a real
number between 0 and 1 to each event A ⊆ S.

I P must satisfy the following axioms:

1. P(∅) = 0, P(S) = 1

2. For any mutually exclusive events
A1,A2, . . . ,An:

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai )

(n may be infinite)
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Interpretations of probability

Frequentist :

I Relative frequency of an event after many repetitions of random experiment.

Bayesian :

I Degree of belief that an event occurs.

I This allows us to assign probabilities to statements like “candidate A wins elections” or
“suspect X is guilty”, although we cannot repeat the same elections or the same crime
over and over.
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Example 2: Properties of P , rolling a die

S = {1, 2, 3, 4, 5, 6}

Consider events:

I A - outcome is 6

I B - outcome is an even number

Using sets: A ⊂ B Probability: P(A) < P(B)

Another event:

I C - outcome is 2 or 4

Using sets: C = B \ A Probability: P(C ) = P(B)− P(A)
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Example 2: Properties of P (cont.)

Rolling a die, S = {1, 2, 3, 4, 5, 6}, A - outcome is 6, B - outcome is an odd number.
Obvioiusly A ∩ B = ∅,

P(A ∪ B) = P(A) + P(B)

A pump in a power plant is backed up by another, identical pump. Event Ai means that
pump i is OK. What is the probability that at least one of them is OK?

P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2)

Both pumps are OK:
P(A1 ∩ A2) = ?
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Properties of probability

For any valid probability function:

I P(A) ∈ 〈0, 1〉 (definition)

I P(∅) = 0, P(S) = 1 (axioms)

I P(Ac) = 1− P(A)

I If A ⊆ B, then P(A) ≤ P(B)

I If A ⊆ B, then P(B \ A) = P(B)− P(A)

I If A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B) (aditivity)

I P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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Example 3: Probability of parts

If we choose a person form the population at random,

I he/she suffers from disease X and is younger than 18 years with probability 0.01,

I he/she suffers from disease X and is between 18 and 65 years with probability 0.05, and

I he/she suffers from disease X and is older than 65 years with probability 0.09.

What is the probability a randomly chosen person suffers from disease X?
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Properties of probability (cont.)

If {B1, . . . ,Bn} is a partition of sample space
then for any event A ⊆ S

P (A) =
n∑

i=1

P (A ∩ Bi ) .

In particular, for partition {C ,C c}

P(A) = P(A ∩ C ) + P(A ∩ C c) .
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Independent events /Nezávislé jevy/

Events A and B are independent if and only iff

P(A ∩ B) = P(A) · P(B).

If A,B are independent, then

I P(A ∪ B) = P(A) + P(B)− P(A) · P(B),

I and pairs A,Bc and Ac ,B and Ac ,Bc are independent too.
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Independence of events: tossing two coins

I A - head on the first coin

I B - head on the second coin

I C - different symbols on the coins

Which groups of events are independent?

A no group of events

B pairs (A,B), (B,C ), (A,C )

C pairs (A,B), (B,C ), (A,C ) and triple (A,B,C )

D only triple (A,B,C )
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Example: Soldier or technician?

Tom likes order, is decisive, and has a good sense of justice. When he was a kid, he liked to
play strategic games and shooting RPGs. He has always been interested in weapons and
military equipment.

What do you think is Tom’s occupation now?

A Soldier

B Technician
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Conditional probability

Conditional probability of event A given event B is defined
as

P(A|B) =
P(A ∩ B)

P(B)
, P(B) 6= 0.

I All probabilities are conditional: P(A) = P(A|S).
I Interpretation:

1. P(A) is our current belief that event A occurs.
2. We get a new information that a different event B occured.
3. P(A|B) is now our updated belief about A.

I Conditional probability is still a probability: it maps any event A ⊆ S to 〈0, 1〉.
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Properties of Conditional Probability

I P(S|B) = 1, P(∅|B) = 0.

I P(A|A) = 1, P(Ac |A) = 0.

I If B ⊆ A, then P(A|B) = 1.

I If P(A ∩ B) = 0, then P(A|B) = 0.

I If A1, . . . ,An are mutually exclusive events, then P

(
n⋃

i=1

Ai

∣∣∣∣∣B
)

=
n∑

i=1

P(Ai |B).

I Events A,B are independent iff P(A|B) = P(A) (if P(A|B) is defined).
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Belief update

1. Probability P(A) is our initial (prior) belief that event A occurs.

2. We learn that another event, B, occured.

3. Probability P(A|B) is our updated (posterior) belief that event A occurs.

No other info about events A and B is available. Which of the following options is correct?

A P(A|B) < P(A)

B P(A|B) = P(A)

C P(A|B) > P(A)

D Any of the above options can happen.
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The Law of Total Probability
Let B1, . . . ,Bn be a partition of the sample space S (i.e., the Bi are disjoint events and their
union is S), with P(Bi ) > 0 for all i .
Then

P(A) =
n∑

i=1

P(A ∩ Bi ) =
n∑

i=1

P(A|Bi ) · P(Bi )
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Bayes rule

Probability of the intersection of two events A and B, P(A ∩ B), can be expressed in 2 ways:

I P(A ∩ B) = P(A|B) · P(B)

I P(A ∩ B) = P(B|A) · P(A)

From that it follows that

P(B|A) =
P(A|B) · P(B)

P(A)

Applying the law of total probability from previous slide:

P(Bi |A) =
P(A|Bi ) · P(Bi )

P(A)
=

P(A|Bi ) · P(Bi )∑
j∈I

P(A|Bj) · P(Bj)
.
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Working with random events becomes cumbersome . . .

Experiment: 3 tosses of a coin. Outcomes s ∈ S. Events Ai ⊆ S:

I three heads – X (s) = 3

I at least one head – X (s) ≥ 1

I three equal symbols – X (s) ∈ {3, 0}
I . . .

We can define each event as a set (often quite large) of outcomes s.
Or we can define a random variable :

X (s) = number of heads in s

Before the experiment, how many heads do I expect to be tossed?
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Random Variable

Random variable (náhodná proměnná/veličina) on

a probability space (S,P) is a function X mapping
elementary events s ∈ S to real numbers R, i.e.,
X : S → R.

“Random variable is a numerical ’summary’ of an
aspect of the experiment.”

I R.v. X assigns a numerical value X (s) to each possible outcome s ∈ S.

I The mapping is deterministic; the randomness comes from outcomes of random
experiment (with outcome probabilities described by probability function P).

I Before the experiment, we know neither the value of s, nor the value of X (s). But we can
compute the probability that X will take on a given value, or a range of values.

I After the experiment, s was realized, and the r.v. crystalizes into value X (s).
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I After the experiment, s was realized, and the r.v. crystalizes into value X (s).
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Events vs Values of Random Variable

Let X be a random variable, i.e., X : S → R.

I X = x denotes the event {s ∈ S : X (s) = x}, i.e., the event consisting of all outcomes s
such that X (s) = x .

I X ∈ 〈a, b) denotes the event {s ∈ S : a ≤ X (s) < b}, i.e., the event consisting of all
outcomes s such that a ≤ X (s) < b.
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Discrete Random Variable
Random variable X is called discrete if the values of
X (s) for all s ∈ S form either

I a finite set of values a1, a2, . . . , an, or

I an infinite set of countably many values a1, a2, . . .

Support of X :
SX = {x ∈ R : P(X = x) > 0} = {a1, a2, . . .}

Probability Mass Function (PMF) /pstńı fce/ of a dis-
crete r.v. X is the function pX given by

pX (x) = P(X = x) = P({s ∈ S : X (s) = x}).

Cumulative Distribution Function (CDF) /distribučńı fce/
of a discrete r.v. X is the function FX defined as

FX (x) = P(X ≤ x) =
∑
t≤x

pX (t).
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Expected value

Expected value (sťredńı hodnota) of a discrete r.v. X is denoted as EX and is defined as

EX =
∑
t∈R

t · pX (t) =
∑
t∈SX

t · pX (t).

For equally probable outcomes s ∈ S also EX =
1

|S|
∑
s∈S

X (s).

Characteristics of EX :

I E r = r , E(EX ) = EX

I E(X + Y ) = EX + EY , E(X + r) = EX + r , E(X − Y ) = EX − EY

I E(rX + sY ) = r EX + s EY

I For independent r.v.s: E(X · Y ) = EX · EY .
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Expected value (sťredńı hodnota) of a discrete r.v. X is denoted as EX and is defined as

EX =
∑
t∈R

t · pX (t) =
∑
t∈SX

t · pX (t).

For equally probable outcomes s ∈ S also EX =
1

|S|
∑
s∈S

X (s).

Characteristics of EX :

I E r = r , E(EX ) = EX

I E(X + Y ) = EX + EY , E(X + r) = EX + r , E(X − Y ) = EX − EY

I E(rX + sY ) = r EX + s EY

I For independent r.v.s: E(X · Y ) = EX · EY .

30 / 31



Expected value
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