
Reinforcement learning

Tomáš Svoboda, Petr Poš́ık

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering, Czech Technical University in Prague

April 17, 2023

1 / 37

Notes

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz

(Multi-armed) Bandits

p(s ′|s, a) and r(s, a, s ′) not known!

2 / 37

Notes

10 armed bandit, what arm to pull?

28 Chapter 2: Multi-armed Bandits

select randomly from among all the actions with equal probability, independently of
the action-value estimates. We call methods using this near-greedy action selection rule
"-greedy methods. An advantage of these methods is that, in the limit as the number of
steps increases, every action will be sampled an infinite number of times, thus ensuring
that all the Qt(a) converge to q⇤(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1� ", that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical e↵ectiveness of
the methods.

Exercise 2.1 In "-greedy action selection, for the case of two actions and " = 0.5, what is
the probability that the greedy action is selected? ⇤

2.3 The 10-armed Testbed

To roughly assess the relative e↵ectiveness of the greedy and "-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k -armed bandit problems with k = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, q⇤(a), a = 1, . . . , 10,

0

1

2

3

-3

-2

-1

q⇤(1)

q⇤(2)

q⇤(3)

q⇤(4)

q⇤(5)

q⇤(6)

q⇤(7)

q⇤(8)

q⇤(9)

q⇤(10)

Reward
distribution

1 2 63 54 7 8 9 10

Action
Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q⇤(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean q⇤(a) unit variance
normal distribution, as suggested by these gray distributions.

3 / 37

Notes

� 10 different arms

� action pulling k−th arm

� value of the action, i.e. q(a) is stochastic (Gaussian around q∗(a))

� Playing (pulling) many times, what is the policy?

Goal-directed system

1
1Figure from http://www.cybsoc.org/gcyb.htm

4 / 37

Notes

http://www.cybsoc.org/gcyb.htm

Reinforcement Learning

38 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

its action, the agent receives a numerical reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.
4

The MDP and agent together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite number of
elements. In this case, the random variables Rt and St have well defined discrete probability distribu-
tions dependent only on the preceding state and action. That is, for particular values of these random
variables, s0 2 S and r 2 R, there is a probability of those values occurring at time t, given particular
values of the preceding state and action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The dot over the equals sign in this equation reminds us that it
is a definition (in this case of the function p) rather than a fact that follows from previous definitions.
The function p : S⇥R⇥ S⇥A! [0, 1] is an ordinary deterministic function of four arguments. The ‘|’
in the middle of it comes from the notation for conditional probability, but here it just reminds us that
p specifies a probability distribution for each choice of s and a, that is, that

X

s02S

X

r2R

p(s0, r |s, a) = 1, for all s 2 S, a 2 A(s). (3.3)

The probabilities given by the four-argument function p completely characterize the dynamics of a
finite MDP. From it, one can compute anything else one might want to know about the environment,
such as the state-transition probabilities (which we denote, with a slight abuse of notation, as a three-
argument function p : S⇥ S⇥A! [0, 1]),

p(s0 |s, a)
.
= Pr{St =s0 | St�1 =s, At�1 =a} =

X

r2R

p(s0, r |s, a). (3.4)

We can also compute the expected rewards for state–action pairs as a two-argument function r : S⇥A!
R:

r(s, a)
.
= E[Rt | St�1 =s, At�1 =a] =

X

r2R

r
X

s02S

p(s0, r |s, a), (3.5)

or the expected rewards for state–action–next-state triples as a three-argument function r : S⇥A⇥S!
R,

r(s, a, s0)
.
= E[Rt | St�1 =s, At�1 =a, St = s0] =

X

r2R

r
p(s0, r |s, a)

p(s0 |s, a)
. (3.6)

it simply as A.
4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next reward and next

state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are widely used in the literature.

2

I Feedback in form of Rewards

I Learn to act so as to maximize expected rewards.
2Scheme from [3]

5 / 37

Notes

Examples

Video: Learning safe policies3

3M. Pecka, V. Salansky, K. Zimmermann, T. Svoboda. Autonomous flipper control with safety constraints.
In Intelligent Robots and Systems (IROS), 2016, https://youtu.be/ oUMbBtoRcs

6 / 37

Notes

Policy search is a more advanced topic, only touched by this course. Later in master programme.

file:///home/xposik/P/0Teaching/kui/repos-gitlab/kui-lectures/08_rl/figures/iros-video.mp4
https://youtu.be/_oUMbBtoRcs

From off-line (MDPs) to on-line (RL)

Markov decision process – MDPs. Off-line search, we know:

I A set of states s ∈ S (map)

I A set of actions per state. a ∈ A
I A transition model T (s, a, s ′) or p(s ′|s, a) (robot)

I A reward function r(s, a, s ′) (map, robot)

Looking for the optimal policy π(s). We can plan/search before the robot enters the
environment.

On-line problem:
I Transition model p and reward function r not known.

I Agent/robot must act and learn from experience.

7 / 37

Notes

For MDPs, we know p, r for all possible states and actions.

(Transition) Model-based learning

The main idea: Do something and:

I Learn an approximate model from experiences.

I Solve as if the model was correct.

Learning MDP model:

I In s try a, observe s ′, count (s, a, s ′).

I Normalize to get and estimate of p(s ′ | s, a).

I Discover (by observation) each r(s, a, s ′) when experienced.

Solve the learned MDP.

8 / 37

Notes

� Where to start?

� When does it end?

� How long does it take?

� When to stop (the learning phase)?

Reward function r(s, a, s ′)

I r(s, a, s ′) - reward for taking a in s and landing in s ′.

I In Grid world, we assumed r(s, a, s ′) to be the same
everywhere.

I In the real world, it is different (going up, down, . . .)

s

s, a

s ′

a

s, a, s ′

v(s)

v(s ′)

In ai-gym env.step(action) returns s ′, r(s, action, s ′).

9 / 37

Notes

In ai-gym env.step(action) returns s ′, r(s, action, s ′), It is defined by the environment (robot simulator,

system, . . .) not by the (algorithms)

Model-based learning: Grid example

4
4Figure from [1]

10 / 37

Notes

Learning transition model

p̂(D | C, east) =?

11 / 37

Notes

(C, east) combination performed 4 times, 3 times landed in D, once in A. Hence, p̂(D | C, east) = 0.75.

Learning reward function

r̂(C, east,D) =?

12 / 37

Notes

Whenever (C, east,D) performed, received reward was −1. Hence, r̂(C, east,D) = −1.

Model based vs model-free: Expected age E [A]

Random variable age A.

E [A] =
∑

a

P(A = a)a

We do not know P(A = a). Instead, we collect N samples [a1, a2, . . . aN].

Model based

P̂(a) =
num(a)

N

E [A] ≈
∑

a

P̂(a)a

Model free

E [A] ≈ 1

N

∑

i

ai

13 / 37

Notes
Just to avoid confusion. There are many more samples than possible ages (positive integer). Think about
N � 100.

� Model based – eventually, we learn the correct model.

� Model free – no need for weighting; this is achieved through the frequencies of different ages within the
samples (most frequent and hence most probable ages simply come up many times).

Model-free learning

14 / 37

Notes

Passive learning (evaluating given policy)

I Input: a fixed policy π(s)

I We want to know how good it is.

I r , p not known.

I Execute policy . . .

I and learn on the way.

I Goal: learn the state values vπ(s)

Image from [2]

15 / 37

Notes
Executing policies - training, then learning from the observations. We want to do the policy evaluation but the
necessary model is not known.

The word passive means we just follow a prescribed policy π(s).

Direct evaluation from episodes

Value of s for π – expected sum of discounted
rewards – expected return

vπ(St) = E

[∞∑

k=0

γkRt+k+1

]

vπ(St) = E [Gt]

16 / 37

Notes

� Act according to the policy.

� When visiting a state, remember what the sum of discounted rewards (returns) turned out to be.

� Compute average of the returns.

� Each trial episode provides a sample of vπ.

What is v(3, 2) after these episodes?

Direct evaluation from episodes, vπ(St) = E [Gt], γ = 1

What is v(3, 2) after these episodes?

17 / 37

Notes

� Not visited during the first episode.

� Visited once in the second, gathered return G = −0.04− 0.04 + 1 = 0.92.

� Visited once in the third, return G = −0.04− 1 = −1.04.

� Value, average return is (0.92− 1.04)/2 = −0.06.

Direct evaluation: Grid example

18 / 37

Notes

Direct evaluation: Grid example, γ = 1

What is v(C) after the 4 episodes?

Let M be the number of recorded episodes.
Let N be the number of samples used
to compute the averages.
What is the relation of M and N?

A N = M

B N ≤ M

C N ≥ M

D N has no relation to M

19 / 37

Notes

� Episode 1, G = −1 + 10 = 9

� Episode 2, G = −1 + 10 = 9

� Episode 3, G = −1 + 10 = 9

� Episode 4, G = −1− 10 = −11

� Average return v(C) = (9 + 9 + 9− 11)/4 = 4

For first-visit variant, B is correct. For every-visit variant, D is correct.

N can be lower than M (state does not have to be attended in every episode). For every-visit variant, N can be

higher than M (a state can be visited several times in one episode).

Direct evaluation algorithm (every-visitfirst-visit version)

Input: a policy π to be evaluated
Initialize:

V (s) ∈ R, arbitrarily, for all s ∈ S
Returns(s)← an empty list, for all s ∈ S

Loop forever (for each episode):
Generate an episode following π: S0,A0,R1,S1,A1,R2, . . . ,ST−1,AT−1,RT

G ← 0
Loop backwards for each step of episode, t = T − 1,T − 2, . . . , 0:

G ← Rt+1 + γG
Append G to Returns(St)
V (St)← average(Returns(St))
If St does not appear in S0, S1, . . . ,St−1: // Use the return for the first visit only

Append G to Returns(St)
V (St)← average(Returns(St))

20 / 37

Notes
The algorithm can be easily expanded to Q(St ,At). Instead of visiting St we consider visiting of a pair St ,At .

Direct evaluation: analysis

The good:

I Simple, easy to understand and implement.

I Does not need p, r and eventually it computes the true vπ.

The bad:

I Each state value learned in isolation.

I State values are not independent

I vπ(s) =
∑

s′ p
(
s ′ | s, π(s)

)[
r(s, π(s), s ′) + γ vπ(s ′)

]

21 / 37

Notes
In second trial, we visit (3, 2) for the first time. We already know that the successor (3, 3) has probably a high
value but the method does not use until the end of the trial episode.

Before updating V (s) we have to wait until the training episode ends.

(on-line) Policy evaluation?

In MDP, we did:

I Initialize the values: V π
0 (s) = 0

I In each iteration, replace V with a one-step-look-ahead:
V π
k+1(s)←∑

s′ p
(
s ′ | s, π(s)

)[
r(s, π(s), s ′) + γ V π

k (s ′)
]

Problem: both p
(
s ′ | s, π(s)

)
and r(s, π(s), s ′) unknown!

22 / 37

Notes

Use samples for evaluating policy?
MDP (p, r known) : Update V estimate by a weighted average:
V π
k+1(s)←∑

s′ p
(
s ′ | s, π(s)

)[
r(s, π(s), s ′) + γ V π

k (s ′)
]

What about stop, try, try, . . . , and average?
Trials at time t. π(St)→ At , repeat At .

trial1 = R1
t+1 + γ V (S1

t+1)

trial2 = R2
t+1 + γ V (S2

t+1)

... =
...

trialn = Rn
t+1 + γ V (Sn

t+1)

V (St)←
1

n

∑

i

triali

St

St ,At

S2
t+1 S1

t+1 Sn
t+1

At

R1
t+1

R2
t+1 Rn

t+1

Problem: We cannot re-set to St easily.
23 / 37

Notes

It looks promising. Unfortunately, we cannot do it that way. After an action, the robot is in a next state and cannot

go back to the very same state where it was before. Energy was consumed and some actions may be irreversible;

think about falling into a hole. We have to utilize the s, a, s ′ experience anytime when performed/visited.

Temporal-difference value learning

γ = 1
From first trial (episode): V (2, 3) = 0.92, V (1, 3) = 0.84, . . .
In second episode, going from St = (1, 3) to St+1 = (2, 3) with reward Rt+1 = −0.04, hence:

V (1, 3) = Rt+1 + V (2, 3) = −0.04 + 0.92 = 0.88

I First estimate 0.84 is a bit lower than 0.88. V (St) is different than Rt+1 + γV (St+1)

I Update (α× difference): V (St)← V (St) + α
([

Rt+1 + γV (St+1)
]
− V (St)

)

I α is the learning rate.

I V (St)← (1− α)V (St) + α (new sample)

24 / 37

Notes
Trial episode: acting, observing, until it stops (in a terminal state or by a limit).
We visit S(1, 3) twice during the first episode. Its value estimate is the average of two returns.
Note the main difference. In Direct evaluation, we had to wait until the end of the episode, compute Gt for each
t on the way, and then we update V (St). We can do it α incrementally

V (St)← V (St) + α
(
Gt − V (St)

)
In TD learning, we update as we go.

Exponential moving average

xn = (1− α)xn−1 + αxn

What does it remember about the past? Try to derive:

xn = f (α, xn, xn−1, xn−2, xn−3, . . .)

25 / 37

Notes
Recursively insetring we end up with

xn = α
[
xn + (1− α)xn−1 + (1− α)2xn−2 + · · ·

]
We already know the sum of geometric series for r < 1

1 + r + r 2 + r 3 + · · · =
1

1− r

Putting r = 1− α, we see that
1

α
= 1 + (1− α) + (1− α)2 + · · ·

And hence:

xn =
xn + (1− α)xn−1 + (1− α)2xn−2 + · · ·

1 + (1− α) + (1− α)2 + (1− α)3 + · · ·
a weighted average that exponentially forgets about the past.

Example: TD Value learning

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St))

I Values represent initial V (s)

I Assume: γ = 1, α = 0.5, π(s) =→
I (B,→,C),−2,⇒ V (B)?

I (C ,→,D),−2,⇒ V (C)?

26 / 37

Notes

Temporal difference value learning: algorithm

120 Chapter 6: Temporal-Di↵erence Learning

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of

27 / 37

Notes

What is wrong with the temporal difference Value learning?

The Good: Model-free value learning by mimicking Bellman updates.
The Bad: How to turn values into a (new) policy?

I π(s) = arg max
a

∑
s′ p(s ′ | s, a) [r(s, a, s ′) + γV (s ′)]

I π(s) = arg max
a

Q(s, a)

28 / 37

Notes

Learn Q-values, not V-values, and make the action selection model-free too!

Active reinforcement learning

29 / 37

Notes

So far we walked as prescribed by a π(s) because we did not know how to act better.

Reminder: V ,Q-value iteration for MDPs

Value/Utility iteration (depth limited evaluation):

I Start: V0(s) = 0

I In each step update V by looking one step ahead:
Vk+1(s)← max

a

∑
s′ p(s ′ | s, a) [r(s, a, s ′) + γVk(s ′)]

Q values more useful (think about updating π)

I Start: Q0(s, a) = 0

I In each step update Q by looking one step ahead:

Qk+1(s, a)←∑
s′ p(s ′ | s, a)

[
r(s, a, s ′) + γmax

a′
Qk(s ′, a′)

]

30 / 37

Notes

Draw the (s)-(s,a)-(s’)-(s’,a’) tree. It will be also handy when discussing exploration vs. exploitation – where to

drive next.

Q-learning

MDP update: Qk+1(s, a)←∑
s′ p(s ′ | s, a)

[
r(s, a, s ′) + γmax

a′
Qk(s ′, a′)

]

Learn Q values as the robot/agent goes (temporal difference)

I Drive the robot and fetch rewards (s, a, s ′,R)

I We know old estimates Q(s, a) (and Q(s ′, a′)), if not, initialize.

I A new trial/sample estimate at time t

trial = Rt+1 + γmax
a

Q(St+1, a)

I α update
Q(St ,At)← Q(St ,At) + α(trial− Q(St ,At))
or (the same)
Q(St ,At)← (1− α)Q(St ,At) + α trial

In each step Q approximates the optimal q∗ function.

31 / 37

Notes

There are alternatives how to compute the trial value. SARSA method takes Q(St+1,At+1) directly, not the max.

More next week.

Q-learning: algorithm

step size 0 < α ≤ 1
initialize Q(s, a) for all s ∈ S, a ∈ S(s)
repeat episodes:

initialize S
for for each step of episode: do

choose A from S
take action A, observe R, S ′

Q(S ,A)← Q(S ,A) + α
[
R + γmaxa Q(S ′, a)− Q(S ,A)

]

S ← S ′

end for until S is terminal
until Time is up, . . .

32 / 37

Notes

From Q-learning to Q-learning agent

I Drive the robot and fetch rewards. (s, a, s ′,R)

I We know old estimates Q(s, a) (and Q(s ′, a′)), if not, initialize.

I A new trial/sample estimate: trial = Rt+1 + γmax
a

Q(St+1, a)

I α update: Q(St ,At)← Q(St ,At) + α(trial− Q(St ,At))

Technicalities for the Q-learning agent

I How to represent the Q-function?

I What is the value for terminal? Q(s,Exit) or Q(s,None)

I How to drive? Where to drive next? Does it change over the course?

33 / 37

Notes
Q-function for a discrete, finite problem? But what about continous space or discrete but a very large one?

Use the (s)-(s,a)-(s’)-(s’,a’) tree to discuss the next-action selection.

Exploration vs. Exploitation

I Drive the known road or try a new one?

I Go to the university menza or try a nearby restaurant?

I Use the SW (operating system) I know or try a new one?

I Go to bussiness or study a demanding program?

I . . .

34 / 37

Notes

How to explore?

Random (ε-greedy):

I Flip a coin every step.

I With probability ε, act randomly.

I With probability 1− ε, use the policy.

Problems with randomness?

I Keeps exploring forever.

I Should we keep ε fixed (over learning)?

I ε same everywhere?

35 / 37

Notes

� We can think about lowering ε as the learning progresses.

� Favor unexplored states - be optimistic - exploration functions - f (u, n) = u + k/n, where u is the value
estimated, and n is the visit count, and k is the training/simulation episode.

References I

Further reading: Chapter 21 of [2] (chapter 23 of [?]). More detailed discussion in [3],
chapters 5 and 6.

[1] Dan Klein and Pieter Abbeel.
UC Berkeley CS188 Intro to AI – course materials.
http://ai.berkeley.edu/.
Used with permission of Pieter Abbeel.

[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.

36 / 37

Notes

http://ai.berkeley.edu/
http://aima.cs.berkeley.edu/

References II

[3] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

37 / 37

Notes

http://www.incompleteideas.net/book/the-book-2nd.html

	Introduction
	Model-based learning
	Model-free learning
	Direct evaluation
	Temporal difference learning

	Active reinforcement learning
	Exploration vs. Exploitation

	References

