Brain-computer interfaces

Jiří Hammer, PhD

Neurologická klinika 2. LF UK

15.05.2024

Outline ...

- What is a brain-machine interface (BMI) ?
- Examples of BMI
 - P300 (EEG)
 - SSVEP (EEG)
 - SCP (EEG)
 - MRP (EEG)
 - Biomimetic BMI (SUA)
- My own research
 - Biomimetic BMI (intracranial EEG)
 - Deep learning for BMI

What is brain-computer interface (BCI)?

Brain-Computer Interface Mysteries of the Brain

Overview of most common brain signals

Electrophysiological brain signals

Electrophysiological brain signals

Modified from Edelman et al. (2015) Engineering

Retinal implant

Second Sight

Cochlear implant

Advanced Bionics

Parkinsons implant

Medtronic

Epilepsy implant

Neuropace

BCI examples

Brain-Computer Interface (BCI): we are at the beginning ...

P300 (EEG) speller: example

(positivity of EEG potential 300 ms after rare/unexpected stimulus)

P300 (EEG) speller: principle

(positivity of EEG potential 300 ms after rare/unexpected stimulus)

- P300 component of EEG
- Discovered in the 60s
- Low probability (surprise) stimulus
- "oddball" paradigm
- Pronounced peak
 - positivity
 - latency: 250 500 ms
- Parietal area of the brain
- Applications: P300 speller – speed cca 10 letters/min

SSVEP (EEG) BMI: example 1

(SSVEP, steady state visual evoked potential)

SSVEP (EEG) BMI: example 2

(SSVEP, steady state visual evoked potential)

A Lower Limb Exoskeleton Control Based on Steady State Visual Evoked Potential

No-Sang Kwak, Klaus-Robert Müller and Seong-Whan Lee

Department of Brain and Cognitive Engineering, Korea University

Pattern Recognition Laboratory

SSVEP (EEG) BMI: principle

(SSVEP, steady state visual evoked potential)

- Voluntary choice of focus on stimulus
- Stimuli flickering at different frequencies
- Signal = "resonant frequency" in visual cortex

Wieser et al. (2016) NeuroImage

SSVEP (EEG) BMI: principle

(SSVEP, steady state visual evoked potential)

Voluntary choice of focus on stimulus •

в

- Stimuli flickering at different frequencies
- Signal = "resonant frequency" in visual cortex •

SCP (EEG) BMI

(SCP, slow cortical potentials)

LIEBER-HERR-BIRBAUMER-

HOFFENTLICH-KOMMEN-SIE-MICH-BESUCHEN,-WENN-DIESER-BRIEF-SIE-ERREICHT-HAT-.ICH-DANKE-IHNEN-UND-IHREM-TEAM-UND-BESONDERS-FRAU-KÜBLER-SEHR-HERZLICH,-DENN-SIE-ALLE-HABEN-MICH-ZUM-ABC-SCHÜTZEN-GEMACHT,-DER-OFT-DIE-RICHTIGEN-BUCHSTABEN-TRIFFT.FRAU-KÜBLER-IST-EINE-MOTIVATIONSKÜNSTLERIN.OHNE-SIE-WÄRE-DIESER-BRIEF-NICHT-ZUSTANDE-GEKOMMEN.-ER-MUSS-GEFEIERT-WERDEN.-DAZU-MÖCHTE-ICH-SIE-UND-IHR-TEAM-HERZLICH-EINLADEN-. EINE-GELEGENHEIT-FINDET-SICH-HOFFENTLICH-BALD.

MIT-BESTEN-GRÜSSEN-IHR-HANS-PETER-SALZMANN

Birbaumer et al. (1999) Nature

Movement-related spatial patterns, EEG BMI: example 1

(ERS / ERD, event related synchronization / desynchronization)

Movement-related spatial patterns, EEG BMI: example 2

Movement-related spatial patterns, EEG BMI: principle

(ERS / ERD, event related synchronization / desynchronization)

Reprezentace těla v mozku: homunkulus

C3 lap C3 lap 5 0 10 15 20 25 30 35 [Hz] 0 0.428 [r²]

[dB]

Blankertz et al. (2007) NeuroImage

Waldert et al. (2009) J Neurophysiol Paris

Biomimetic BMI (single neurons): example 1

Biomimetic BMI (single neurons): example 2

Biomimetic BMI (single neurons): example 3

Collinger et al. (2014) Lancet

Biomimetic BMI (single neurons): principle

Directional "cosine tuning" of motor cortex neurons

Biomimetic BMI (single neurons): principle

Georgopoulos et al. (1982) J Neurosci

Decoding model for movement direction = sum of neuronal population along preferred directions

$$\boldsymbol{P}(\boldsymbol{M}) = \sum_{n=1}^{N} r_n(\boldsymbol{M}) \boldsymbol{\Phi}_n$$

- $\pmb{P} \sim \text{predicted movement direction}$
- $\textbf{\textit{M}} \sim$ intended movement direction
- $r_n \sim \text{discharge of } n \text{-th neuron}$
- $\mathbf{\Phi}_n$ ~ preferred direction of *n*-th neuron
- $N \sim$ number of neurons

BMI (single neurons): with sense of touch – example 1

BMI (single neurons): with sense of touch – example 2

ARAT

Fastest trial comparison for each object with and without ICMS feedback

University of Pittsburgh

Flesher et al. (2021) Science

BMI (single neurons): with sense of touch

Neuls a Botek: Základy neurofyziologie

BCI (single neurons): text writing example

From YouTube (Krishna Shenoy: Brain-to-text communication via imagined handwriting-Tencent WE Summit 2021)

Problem: myelinization of micro-electrodes

after 2 and 6 weeks after implantation

Turner et al. (1999) Experimental neurology

BMI: Speech synthesis of spoken sentences from ECoG

Anumanchipalli et al. (2019) Nature

BMI: Speech synthesis of spoken sentences from ECoG

Anumanchipalli et al. (2019) Nature

BMI: Speech synthesis of spoken sentences from ECoG

- We designed a recurrent neural network that decoded cortical signals with an explicit intermediate representation of the articulatory dynamics to synthesize audible speech.
- **STAGE 1:** a bLSTM RNN decodes **articulatory kinematic features** from continuous neural activity (Fig. 1a, b)
 - high-gamma amplitude envelope and low frequency component
 - from vSMC, STG, IFG
- **STAGE 2:** a separate bLSTM, decodes **acoustic features** (pitch, melfrequency cepstral coefficients (MFCCs), ...) from the decoded articulatory features (Fig. 1c)
- **The audio signal** is then synthesized from the decoded acoustic features (Fig. 1d).
- To integrate the two stages of the decoder, stage 2 (articulation-toacoustics) was trained directly on output of stage 1 (brain-toarticulation) so that it not only learns the transformation from kinematics to sound, but also corrects articulatory estimation errors made in stage 1.

"Our" BMI research (Prof. Tonio Ball, Freiburg)

Intracranial EEG (iEEG)

- Invasive
- Signal quality is superior to scalp EEG
- Patients with epilepsy
- Cognitive experiments during video-EEG monitoration

sEEG (stereo-EEG)

ECoG (electrocorticography)

Biomimetic BMI (ECoG): example 1

(electrocorticography)

Pistohl et al. (2008) J Neurosci Methods

Biomimetic BMI (ECoG): example 2

(electrocorticography)

Milekovic et al. (2012) J Neural Eng

Biomimetic BMI (ECoG): principle

(electrocorticography)

- Decoder: example 1
 Kalman filter
- Decoder: example 2
 - LDA (linear discriminant analysis)

Biomimetic BMI (ECoG): "my own" results

Tuning of ECoG to different movement directions

1-D control task

2-D control task

Hammer et al. (2016) Cereb Cortex

Movement speed correlates with motor-cortical activation.

Velocity tuning of single-unit activity (SUA)

- ECoG
 - strong speed tuning
 - weak directional tuning

- SUA
 - strong directional tuning
 - (e.g. Georgopolous et al. 1982)
 - weak speed tuning

(e.g. Moran and Schwartz, 1999)

Moran and Schwartz (1999) 44

 Mimics the activity of a recorded ECoG electrode

- Assumptions
 - spatial sum of firing rates of underlying SUA

(Waldert et al., 2009)

 random distribution of PDs on a mm scale

(e.g. Georgopoulos et al., 2007)

 discharge activity as a function of movement velocity (*Moran and Schwartz, 1999*)

SNR of directional and speed tuning

$$P_N(\varphi, s) = \sum_{n=1}^{N} d_n(\varphi, s)$$

 $P_N \sim$ population activity of N neurons $d_n \sim$ discharge of *n*-th neuron $\varphi \sim$ direction $s \sim$ speed

Moran and Schwartz (1999)

SNR of directional and speed tuning

$$P_{N}(\varphi, s) = \sum_{n=1}^{N} d_{n}(\varphi, s)$$

$$P_{N}(\varphi, s) = \sum_{n=1}^{N} d_{n}(\varphi, s)$$

$$P_{N} \sim \text{population activity of } N \text{ neurons}$$

$$d_{n} \sim \text{discharge of } n\text{-th neuron}$$

$$\varphi \sim \text{direction}$$

$$s \sim \text{speed}$$

$$= \sum_{n=1}^{N} [S_{n} \cdot s + V_{n} \cdot s \cdot \cos(\varphi - PD_{n}) + \varepsilon_{n}]$$
Moran and Schwartz (1999)

Moran and Schwartz (1999)

Example
$$P_N(\varphi, s)$$

N = 1000 neurons

SNR of directional and speed tuning

$$P_{N}(\varphi, s) = \sum_{n=1}^{N} d_{n}(\varphi, s)$$

$$= \sum_{n=1}^{N} [S_{n} \cdot s + V_{n} \cdot s \cdot \cos(\varphi - PD_{n}) + \varepsilon_{n}]$$

 $P_N \sim$ population activity of N neurons $d_n \sim$ discharge of *n*-th neuron $\varphi \sim$ direction $s \sim$ speed

directional tuning speed tuning

Hammer et al. (2016)

Neuronal population activity is consistent with robust speed representation.

Neuronal population activity increases with speed.

Why do we see speed-related power increase up to 1 kHz ?

Deep learning in BMI

- Deep artificial neural networks
 - CNN (convolutional neural networks)
 - RNN (recurrent neural networks), ...
- Recent breakthroughs in hard machine learning problems
 - Computer vision
 - Language processing

- ..

- + Super-human performance
- + Capable of *end-to-end* learning
- + No need for feature engineering
- - Particularly dark "black box" algorithm
- - Requires large datasets
- Useful in BMI research ?

Edges Contrasts Textures Basic shapes

Complex object parts

Krizhevsky et al. 2012 Zeiler et al. 2013

Deep4: CNN for EEG (classification problem)

Schirrmeister et al. 2017

Investigate learned filters of convolutional layers: **1234**

Visualization by Perturbation

Perturbation Results

Hartmann et al. 2018

Deep4: CNN for EEG (regression problem)

Hammer et al. 2019 – in prep.

Investigate learned filters of convolutional layers: **1234**

12 epilepsy patients with intracranial EEG implantations in motor cortex

Convolutional neural networks outperform multiple linear regression

Hammer et al. 2019 – in prep.

Network sensitivity to amplitude and phase perturbations

Motor-cortex channels Non-motor channels

Hammer et al. 2019 – in prep.

Deep learning for iEEG decoding

- Convolutional neural networks (CNNs) are capable of *end-to-end* learning to decode movement from intracranial EEG.
- CNNs outperformed MLR and extracted information from motor cortex.
- CNNs learned low-frequency phase and betaband amplitude information.
- Different CNN filters specialized for different features.

BMI usage

- Movement restoration
 - Paralyzed patients
- Neurorehabilitation
 - Patients after stroke
- Sensory restoration
 - Hearing: cochlear implants
 - Vision: retina / visual implants
- Brain stimulation
 - deep brain stimulation: Parkinson patients, depression, ...
 - epilepsy: seizure detection and stimulation
- Entertainment (gaming), ...
- Ethical issues!

Would you like to join our research?

- Project, diploma thesis, PhD
 - ČVUT: doc. Daniel Novák, FEL
 - ČVUT: Dr. Radek Janča, katedra teorie obvodů, FEL
 - 2. LF UK: Prof. Petr Marusič
- Topics: closed-loop (with feedback) BCI
 - interdisciplinary (bioingeneering, medicine, machine learning, stat. data analysis, hardware communication, software implementation, ...)
 - using iEEG
 - cooperation with
 - University of Freiburg (DE): Prof. Ball
 - University of Grenoble (FR): Prof. Bastin

Acknowledgements

- Uni Clinic, Freiburg
 - Tonio Ball
 - Tobias Pistohl
 - Joos Behncke
 - Martin Völker
 - Andreas Schultze-Bonhage

- 2. LF UK a FN Motol
 - Petr Marusič
 - Adam Kalina
 - Pavel Čelakovský
 - Přemysl Jiruška
 - Pavel Kršek

... a vám za pozornost

