DEEP LEARNING (SS2024)
SEMINAR 1

Assignment 1. Consider an artificial neuron

y= f(i:wﬂz‘ +b>
i=1

for inputs x € R™ with weights w € R", bias b € R and activation function f. Show that
the affine mapping given by (w, b) can be replaced by a linear mapping if we extend the
input space by one dimension. Give a geometric interpretation.

Hint: A linear mapping has no constant bias term. Essentially we want to obtain y =
f(wT"Z) for a suitable representation of x by Z. This transformation is quite common.
It simplifies both derivations and implementations (e.g. in regression, logistic regression,
Perceptron algorithm). It is used in the first lab.

Assignment 2 (Softmax). The softmax function is defined as
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where the inputs s are often called scores or logits. It is a standard way to parameterise
a categorical distribution. It is commonly used in neural network classifiers, to define the
predictive probability of class labels. Show the following properties of this function:

softmax: R" — R : 5+

a) Scores are defined up to an additive constant, i.e. show that softmax(s) is invariant to
adding the same number to all scores s.

b) Deciding for the best class can be performed either based on probabilities or scores,
i.e. show that arg max; softmax(s); = arg max;(s;).

¢) Let us verify that a multinomial regression model that uses softmax, is equivalent to
a logistic regression model in the case of two classes. In the next lab, we will ask you
to implement a NN for a two class problem, and this exercise should help you to avoid
confusion.

Consider a classification problem with features * € R™ and two classes y € {1,2}. A
neural network for this problem may be designed to output probabilities of the two classes
as the vector with components

p(y=k | z) = softmax,(Wz +b), k=12 (1)

using weights W € R?*", b € R2. Another network for the same problem is designed to
output real-valued scores

a=v'z+c, (2)



using weights v € R", ¢ € R. It defines the predictive probability as

ply=1]z) = o(a) and p(y=2|2) =1—0(a) = o(—a), 3)

where o is the logistic sigmoid function: ¢(a) = —2— . Show that each model of the
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form (1) has an equivalent model of the form (2)-(3) and vice-versa.

Assignment 3. Consider a two-layer network
22 =F(2%) = foA?o0 foAla®

with affine mappings A¥2z%~1 = Wka*=1 4 p¥ k& = 1,2 and element-wise activation
function f.

a) Assume that the activation function f is the identity mapping f: x — x. Show that the
network is equivalent to a network with only one affine layer. It follows that the identity
activation function is not a good choice in most cases.

b) Assume that the activation function is ReLU, i.e. f(x) = max(0,z). Show that re-
scaling (W1, ) — (AW, A\b!) and (W2, 0%) — (A~1W?2, b?) with some positive ) keeps
the network mapping /' unchanged.

Note: The equivalence of the forward pass does not imply equivalence w.r.t. training.
In fact, we will discuss later that such transforms substantially affect gradient descent
algorithms.

Assignment 4 (Overfitting). In this exercise we discuss the overfitting problem on the ex-
ample of a simple logistic regression model (2-class classification). The model is defined
as follows:

) T
ply |z w) = o(yw” ),
where y = £1 is the class, z € R" is the feature vector, w € R" is a parameter vector and

o is the logistic sigmoid function. Given training data 7 = {(x;,y;) | j = 1...m}, we
want to estimate w by maximising the (conditional) log-likelihood ) _ ; log p(y; | z;; w).

a) Let us assume that the training data are linearly separable. Prove that in this case the
logistic regression problem has no finite optimal solution. This can be shown e.g. by
noting that for any w that achieves a correct classification, taking w’ = aw with a > 1
achieves a higher likelihood.

b) Show that subtracting the regularizer on the weight norm A||w||? with some A > 0 fixes
this problem, i.e. that the optimal solution is finite.



