Pairwise Sequence Alignment

Jiří Kléma

Department of Computer Science, Czech Technical University in Prague

Lecture based on Mark Craven's class at University of Wisconsin

http://cw.felk.cvut.cz/wiki/courses/b4m36bin/start

Overview

- Pairwise sequence alignment
 - the algorithmic task,
 - broader biological motivation
 - * relationship among sequence similarity, homology and function,
 - * types of DNA changes during evolution,
 - * success stories in DNA sequence comparisons,
 - types of alignment, issues in sequence alignment,
- what is needed to score an alignment?
 - substitution costs, gap penalty,
- optimal solution
 - dynamic programming,
 - time and space complexity for different task modifications.

Pairwise alignment: task definition

Given

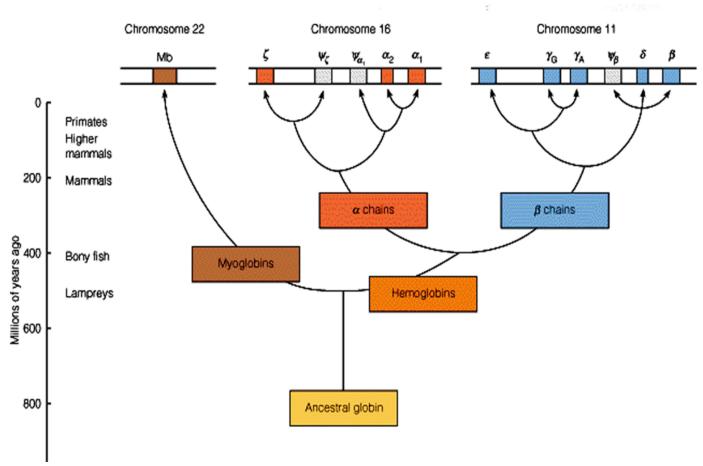
- a pair of sequences (DNA or protein),

- a method for scoring a candidate alignment,

do 🛯

 determine the correspondences between substrings in the sequences such that the similarity score is maximized,

example

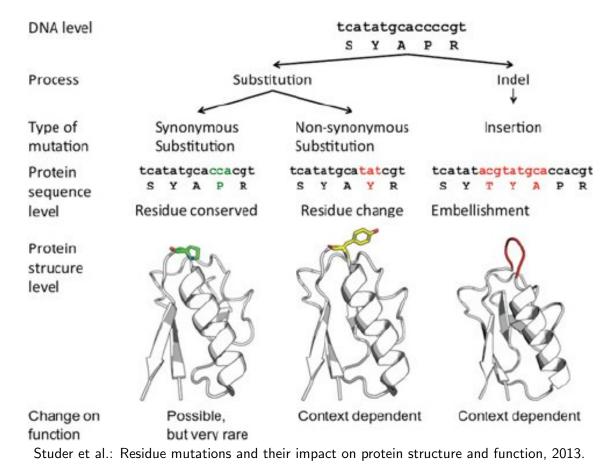

orig=align1	align2	align3
ACACT	ACACT	ACACT
ΑΑΤ	A - A - T	AAT

The role of homology in alignment

Homology

- similarity due to descent from a common ancestor,
- orthologous sequences
 - * sequences that differ because they are found in different species with a common ancestor (e.g. human α -globin and mouse α -globin),
- paralogous sequences
 - * sequences that differ because of a gene duplication event (e.g. human α -globin and human β -globin, various versions of both),
- homologous sequences have similar structures, and frequently, they have similar functions,
- often we can infer homology from similarity
 - if two sequences share more similarity than expected by chance,
- thus we can sometimes infer structure/function from sequence similarity.

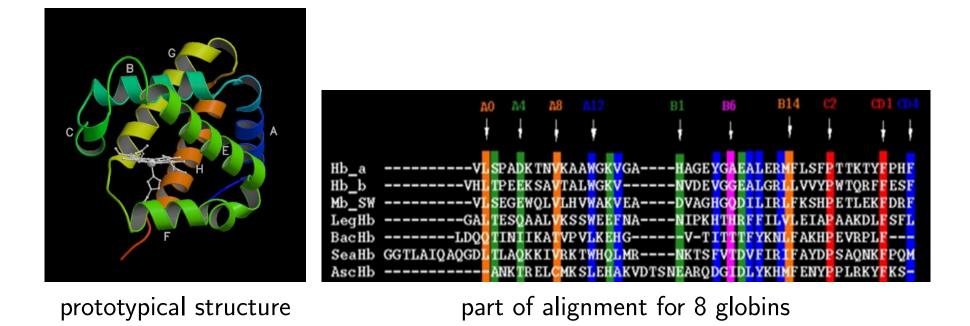
Homology example: evolution of the globins


- 1983: Russell Doolittle and colleagues found similarities between cancercausing gene of Simian sarcoma virus and normal growth factor (PDGF) gene (see Jones and Pevzner's book)
 - the active domain of PDGF-B shared an almost identical structure with the cancer-causing gene ν -sis,
 - consequnce: human cancers may be caused by growth factors,
- 1989: biologists found similarity between the cystic fibrosis (CF) gene and ATP binding proteins
 - in early 1980s biologists hypothesized that CF is an autosomal recessive disorder caused by mutations in a gene that remained unknown till 1989,
 - in 1989 a candidate gene found,
 - then, a certain mutation was found in 70% of CF patients, convincing evidence that it is a predominant genetic diagnostics marker for CF.

DNA sequence edits

- gene scale (short DNA sequences)
 - substitutions: $ACGA \rightarrow AGGA$,
 - insertions: $ACGA \rightarrow ACCGGAGA$,
 - deletions: **ACGGAGA** \rightarrow **AGA**,
- genome scale (long DNA sequences)
 - transpositions: **ACGGAGA** \rightarrow **AAGCGGA**,
 - inversions: **ACGGAGA** \rightarrow **ACTCCGA**,
- in this lecture we will focus on the case of short sequences.

Insertions/deletions and protein structure


- Why is it that two "similar" sequences may have large insertions/deletions?
 - some insertions and deletions may not significantly affect the structure of a protein.

Example alignment: globins

Multiple sequence alignment for 8 globins

- prototypical structure preserved despite only partial sequential match.

Issues in sequence alignment

- the sequences typically differ in length,
- there may be only a relatively small region in the sequences that matches,
- some amino acid pairs are more substitutable than others,
- variable length regions may have been inserted/deleted from the common ancestral sequence,
- different types of alignment could be considered
 - global: find best match of both sequences in their entirety,
 - local: find best subsequence match,
 - semi-global: find best match without penalizing gaps on the ends of the alignment.

Scoring an alignment: what is needed?

- $\hfill\blacksquare$ Substitution matrix S
 - s(a, b) indicates score of aligning character a with character b,
 - either DNA substitution matrices
 - * DNA is less conserved than protein sequences,
 - * less effective to compare coding regions at nucleotide level,
 - or amino acid substitution matrices
 - * PAM (Point Accepted Mutation),
 - * BLOSUM (BLOcks SUbstitution Matrix),
- gap penalty function w
 - w(g) indicates cost of a gap of length g,
 - the simplest case is when a linear gap function is used
 - * $w(g) = -g \times d$, where d is a constant,
 - * we will start by considering this case, the simplest alignment algorithms.

Substitution score

- Two aligned sequences: $X = x_1 \dots x_n$, $Y = y_1 \dots y_n$,
- null hypothesis = random model R
 - X and Y are unrelated (not homologous), independent residues

$$P(X, Y|R) = P(X|R)P(Y|R) = \prod_{i} p(x_i) \prod_{i} p(y_i)$$

- $\hfill \hfill \hfill$
 - each pair of aligned residues has a common (unknown) ancestor,
 - $-p(x_i, y_i) =$ prob that x_i and y_i evolved from a common original residue

$$P(X, Y|M) = \prod_{i} p(x_i, y_i)$$

odds ratio = the strength of match

$$\frac{P(X, Y|M)}{P(X, Y|R)} = \prod_{i} \frac{p(x_i, y_i)}{p(x_i)p(y_i)}$$

Substitution score

Key issues

- the score has to be additive,
- how to guess the (joint) probabilities,
- log-odds ratio = an additive scoring scheme

$$log \frac{P(X, Y|M)}{P(X, Y|R)} = \sum_{i} log \frac{p(x_i, y_i)}{p(x_i)p(y_i)}$$

- BLOSUM matrices
 - guess the probs from BLOCKS database,
 - blocks are multiply aligned ungapped segments corresponding to the most highly conserved regions of proteins,
 - for each possible pair of amino acids the frequency $f(a_i, a_j)$ of common pairs in all columns is determined.

BLOSUM-62 substitution matrix

С	9 small and polar residues BLOSUM-62 matrix																			
s	-1	4		0.																
т	-1	1	5																	
Ρ	-3	-1	-1	7	-1 4 small and nonpolar															
А	0	1	0	-1																
G	-3	0	-2	-2	0	6														
Ν	-3		0	-2		0	6			pola	ar or	acid	lic re	esidu	les					
D	-3		-1	-1	-2		1	6												
E		0	-1	-1	-1	-2	0	2	5											
Q	-3	0	-1	-1	-1	-2	0	0	2	5										
н	-3	-1	-2	-2	-2	-2	1	-1	0	0	8		b	asic						
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5								
К	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5							
Μ	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5			rge a			
Т	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4	ny	drop	onop	OIC	
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4				
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	3	2	1	3	1	4			
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6	a	romatic
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11
	С	S	Т	Ρ	А	G	Ν	D	Е	Q	Н	R	К	Μ	1	L	V	F	Y	W

.....

2 B

https://www.chegg.com/

Substitution score vs genetic code

- Substitution scores
 - derived empirically from an alignment,
 - reflect physico-chemical and other AA properties,
 - example of a high substitution score (2)
 - * E glutamic acid (Glu) and D aspartic acid (Asp),
 - * related genetic codes, similar properties and function
 - * (acidic, polar, the most hydrophilic pair of AAs).

Second Letter											
		U U	J	(2		A	0	;		
	υ	UUU UUC UUA UUG	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Tyr Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	U C A G	
1st letter	с	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gln	CGU CGC CGA CGG	Arg	U C A G	3rd letter
	A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	U C A G	
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	Gly	UCAG	

https://pediaa.com/how-to-find-amino-acid-sequence/

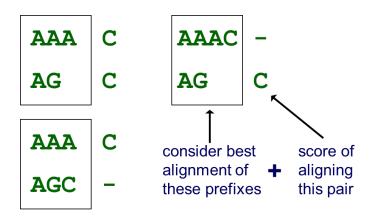
Scoring an alignment

- The score of an alignment is the sum of the scores for pairs of aligned characters plus the scores for gaps
- example: given the following alignment

VAHV---D--DMPNALSALSDLHAHKL

AI QLQVTGVVVTDATLKNLGSVHVSKG

• we would score it by

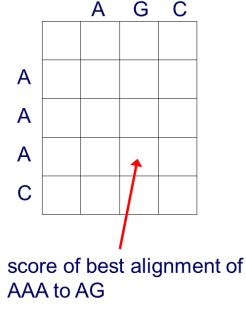

 $s(V,A) + s(A,I) + s(H,Q) + s(V,L) - 3d + s(D,G) - 2d + \ldots,$

- the number of possible alignments
 - can we find the highest scoring alignment by enumerating all possible alignments and picking the best?

- no, there are $\binom{n+m}{n}$ alignments, for n=m it is $pprox rac{2^{2n}}{\sqrt{\pi n}}$

Pairwise alignment via dynamic programming

- dynamic programming
 - recursive decomposition of a complex problem into smaller subproblems,
 - gradually determine best alignment of all prefixes of the sequences,
 - guaranteed to find the optimal scoring alignment.
- the basic idea
 - consider last step in computing alignment of **AAAC** with **AGC**,
 - three possible options; in each a different pairing for end of alignment added to best alignment of previous characters.



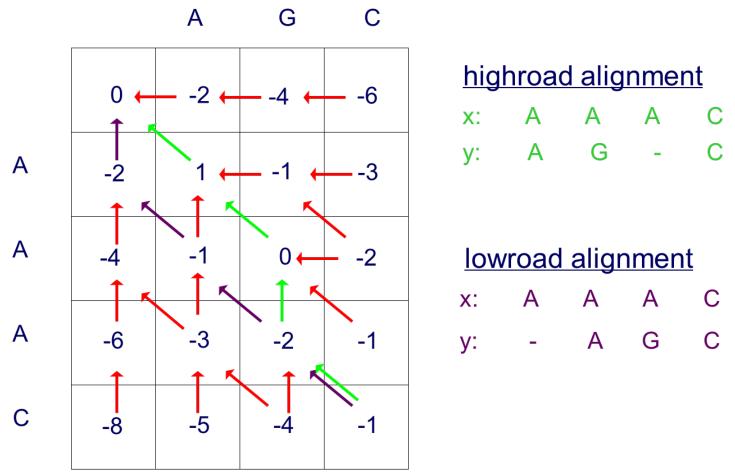
Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Dynamic programming: implementation for linear penalty

- First proposed by Needleman & Wunsch, Journal of Molecular Biology, 1970,
- given two unaligned sequences: $X = x_1 \dots x_n$, $Y = y_1 \dots y_m$,
- construct an (n+1) \times (m+1) matrix F,
- F(i, j) = score of the best alignment of X[1...i] with Y[1...j],

$$F(i, j) = max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ F(i - 1, j) - d \\ F(i, j - 1) - d \end{cases}$$

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.


DP algorithm sketch: global alignment

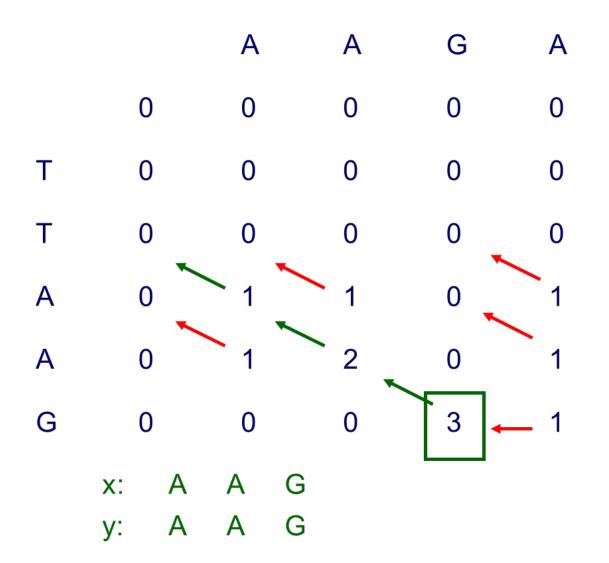
- $\hfill \hfill \hfill$
 - gradual alignment with gaps, knowledge of w is sufficient,
- fill in rest of matrix from top to bottom, left to right,
- for each F(i, j), save pointer(s) to cell(s) that resulted in best score,
- F(m,n) holds the optimal alignment score,
- $\hfill\blacksquare$ trace pointers back from F(m,n) to F(0,0) to recover alignment,

example:

- suppose we choose the scoring scheme:
 - * if $x_i = y_j$ then s(i, j)=1 otherwise s(i, j)=-1,
 - * d (penalty for aligning with a gap) = 2.

Global alignment example

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.


- many optimal alignments may exist for a given pair of sequences
 - can use preference ordering over paths when doing traceback,
- works for either DNA or protein sequences, although the substitution matrices used differ
 - DNA examples here for the sake of simplicity,
- the exact algorithm (and computational complexity) depends on gap penalty function,
- computational complexity with linear gap penalty function
 - initialization: $\mathcal{O}(m)$, $\mathcal{O}(n)$ where sequence lengths are m and n,
 - filling in rest of matrix: $\mathcal{O}(mn)$,
 - traceback: $\mathcal{O}(m+n)$,
 - total when m pprox n: $\mathcal{O}(n^2)$,

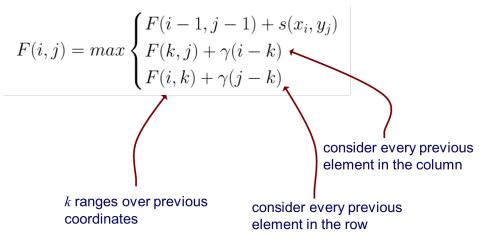
Local alignment

- so far we have discussed global alignment, where we are looking for best match between sequences from one end to the other,
- often we want the best match between subsequences of X and Y,
- motivation for local alignment
 - useful for comparing protein sequences that share a common motif (conserved pattern) or domain (independently folded unit) but differ elsewhere,
 - more sensitive when comparing highly diverged sequences,
 - useful for comparing protein sequences against genomic DNA sequences (long stretches of uncharacterized sequence).

- first proposed by Smith and Waterman, Journal of Molecular Biology, 1981,
- changes wrt global aligment DP algorithm
 - -F interpretation
 - * F(i, j) = score of the best alignment of a suffix of X[1...i] and a suffix of Y[1...j],
 - * F(i, j) cannot be negative (means skip the current prefices when the score is negative),
 - initialization
 - * first row and first column initialized with 0's,
 - traceback
 - * start from maximum value of F(i, j), can be anywhere in matrix,
 - * stop when we get to a cell with value 0.

Local alignment example

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.


• a gap of length k is more probable than k gaps of length 1,

- a gap may be due to a single mutational event that inserted/deleted a stretch of characters,
- separated gaps are probably due to distinct mutational events,
- a linear gap penalty function treats these cases the same,
- it is more common to use gap penalty functions involving two terms
 - a penalty d associated with opening a gap,
 - a smaller penalty e for extending the gap,
 - affine penalty: w(g) = -d (g-1)e for $g \ge 1$ otherwise 0,
 - convex penalty: w(g) = -d log(g)e for $g \ge 1$ otherwise 0.

Computational complexity and gap penalty functions

- assume two sequences of length n,
- DP time complexity depends on gap penalty function as follows
 - linear penalty: $\mathcal{O}(n^2)$,
 - affine penalty: $\mathcal{O}(n^2)$,
 - convex penalty: $\mathcal{O}(n^2\log n)$,
 - general penalty: $\mathcal{O}(n^3)$.

• why the general case has time complexity $\mathcal{O}(n^3)$

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Pairwise alignment summary

- sequences must be aligned before similarity assessment,
- the number of possible alignments is exponential in the length of sequences being aligned,
- dynamic programming can find optimal-scoring alignments in polynomial time,
- the specifics of the DP depend on
 - local vs. global alignment,
 - gap penalty function,
- affine penalty functions are most commonly used,
- the alignment can be done in linear space.