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pOverview

� Motivation for statistical models in computational biology

− to represent the statistical regularities of some class of sequences,

− the sequences could be genes, various regulatory sites in DNA (e.g. pro-
moters), proteins in a given family,

� Markov models

− Markov property

∗ given the present, the future does not depend on the past,

− trade-off between simplicity and veracity,

− Markov chains

∗ the model states are observable,

∗ one-to-one link between the states and the sequence symbols,

− hidden Markov models.

∗ the relationship between states and symbols remains hidden.
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pMotivation for sequence modeling

http://helicase.pbworks.com/
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pMarkov chain models

� a Markov chain model is defined by

− a set of states

∗ some states emit symbols,

∗ other states (e.g., the begin and end states) are silent,

∗ in our case, the silent states allow the model to represent

· preferences for beginning and ending sequences with certain symbols,

· a distribution over sequences of different lengths,

− a set of transitions with associated probabilities

∗ the transitions emanating from a given state define a distribution over
the possible next states.
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pA Markov chain model

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

the set of states:
S = {begin, end, a, c, g, t}
the transition probabilities:
P (xi = a|xi−1 = g) = 0.16
P (xi = c|xi−1 = g) = 0.34
P (xi = g|xi−1 = g) = 0.38
P (xi = t|xi−1 = g) = 0.12

. . .
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pMarkov property

� Let X be a sequence of random variables X1 . . . XL representing a biological
sequence,

� from the chain rule of probability

P (X) = P (XL, XL−1, . . . , X1) =

= P (XL|XL−1, . . . , X1)P (XL−1|XL−2, . . . , X1) . . . P (X1)

� the key property of a (1st order) Markov chain: the probability of each Xi

depends only on the value of Xi−1

P (X) = P (XL|XL−1)P (XL−1|XL−2) . . . P (X2|X1)P (X1) =

= P (X1)

L∏
i=2

P (Xi|Xi−1)
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pThe probability of a sequence for a given Markov chain

P (cggt) = P (c)P (g|c)P (g|g)P (t|g)P (end|t)
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pThe role of the end state

� The end state defines a distribution over varying sequence lengths.
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pEstimating the model parameters

� Given some data, how can we determine the probability parameters of our
model?

� one approach: maximum likelihood estimation (MLE)

− given a set of data D,

− set the parameters θ to maximize P (D|θ),

− i.e. make the data D look as likely as possible under the model,

� suppose that we are given the following set of DNA sequences

D ={accgcgctta,gcttagtgac,tagccgttac}
− what parameters do we have to find?

− how can we compute them?

− is MLE the best approach?

9/23 B4M36BIN Markov chains



pMaximum likelihood estimation

� We have to estimate transition probabilities

− initial probabilities: P (a), P (c), P (g), P (t),

− 16 1st order probabilities: P (a|a), P (a|c), . . . , P (t|t),

� MLE implemented via relative frequencies

P (x) =
nx∑

i∈{a,c,g,t} ni
where nx is frequency of x

P (a) =
6

30
= 0.2, P (c) =

9

30
= 0.3, P (g) =

7

30
= 0.233, P (t) =

8

30
= 0.267

P (x|y) =
nyx∑

i∈{a,c,g,t} nyi
where nyx is frequency of the subsequence yx

P (a|g) =
1

7
, P (c|g) =

4

7
, P (t|g) =

2

7
, P (g|g) =

0

7

� do we really want to have zero probabilities?
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pA Bayesian approach

� Start with some prior belief for each parameter

− instead of estimating parameters strictly from the data,

− maximize posterior probability instead of the likelihood

P (θ|D) =
P (D|θ)P (θ)

P (D)

� Laplace estimates represent the way of smoothing for discrete variables

P (x) =
nx + 1∑

i∈{a,c,g,t}(ni + 1)
where 1 is a pseudocount

� m-estimates represent its more general form

P (x) =
nx + pxm∑

i∈{a,c,g,t}(ni) + m

where m is the number of virtual instances and px is a prior probability of x.
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pA Bayesian approach

� Remember the data: D ={accgcgctta,gcttagtgac,tagccgttac},
� regularize P (a|g) by Laplace estimate

P (x|y) =
nyx + 1∑

i∈{a,c,g,t}(nyi + 1)

P (g|g) =
0 + 1

7 + 4
= 0.091

� regularize P (a|g) by m-estimate with m = 8 and uniform priors

P (x|y) =
nyx + pxm∑

i∈{a,c,g,t}(nyi) + m

P (g|g) =
0 + 0.25× 8

7 + 8
= 0.133
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pHigher order Markov chains

� the Markov property specifies that the probability of a state depends only on
the probability of the previous state,

� but we can build more “memory” into our states by using a higher order
Markov model,

� in an nth order Markov model

P (Xi|Xi−1, Xi−2, . . . , X1) = P (Xi|Xi−1, . . . , Xi−n)

� higher order models remember more “history”,

� additional history can have predictive value,

� example: predict the next word in this sentence fragment

− “. . . the ” (duck, end, grain, tide, wall, . . . ?)

� now predict it given more history

− “. . . against the ” (duck, end, grain, tide, wall, . . . ?)

− “swim against the ” (duck, end, grain, tide, wall, . . . ?)
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pSelecting the order of a Markov chain model

� The order of a Markov chain is a trade-off between simplicity and veracity,

� the number of parameters grows exponentially with the order

− for modeling DNA we need O(4n+1) parameters for an nth order model,

� the higher the order, the less reliable the parameter estimates

− estimating the parameters of a 2nd order Markov chain from the complete
genome of E. Coli, we’d see each word > 72,000 times on average,

− estimating the parameters of an 8th order chain, we’d see each word ≈ 5
times on average.
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pHigher order Markov chains

� an nth order Markov chain over some alphabet Σ is equivalent to a first order
Markov chain over the alphabet Σn of n-tuples,

� example: a 2nd order Markov model for DNA can be treated as a 1st order
Markov model over alphabet
AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

� caveat: we process a sequence one character at a time

− a sequence A C G G T processed as A C → C G → G G → G T,
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pA fifth-order Markov chain

P (gctaca) = P (gctac)P (a|gctac)
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pInhomogenous Markov chains

� in an inhomogeneous Markov model, we can have different distributions at
different positions in the sequence,

� consider modeling codons in protein coding regions.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pA fifth-order inhomogenous Markov chain

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pExample Markov chain application

� CpG islands

− CG dinucleotides are rarer in eukaryotic genomes than expected given the
marginal probabilities of C and G,

− CpG islands = the regions upstream of genes rich in CG dinucleotides,

− useful evidence for finding genes,

� could classify CpG islands with Markov chains

− one to represent CpG islands, one to represent the rest of the genome.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.
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pCpG islands as a classification task

� train a CpG chain and a null chain

− parameters estimated from sample sequences,

− in here, human sequences with 48 CpG islands, 60000 nucleotides,

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

� given a test sequence X , use two models to

− determine its probability given both the models,

− classify the sequence = compare the posterior probabilities.
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pMarkov chains for discrimination

� compare the posterior probabilities, use Bayes’ rule

P (CpG|X) =
P (X|CpG)P (CpG)

P (X)
=

=
P (X|CpG)P (CpG)

P (X|CpG)P (CpG) + P (X|null)P (null)

� if we do not know prior probabilities of two classes (P (CpG) and P (null))
then we just need to compare P (X|CpG) and P (X|null)
− i.e, the probabilities derived from the chains,

� often shown and compared in terms of log odds

log
P (CpG|X)

P (null|X)
= logP (CpG|X)− logP (null|X) ≥ 0
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pMarkov chains for discrimination

� light bars represent negative sequences,

� dark bars represent positive sequences (e.g., CpG islands),

� however, the figure here is not from a CpG island discrimination task.

Krogh et al.: An Introduction to Hidden Markov Models for Biological Sequences.
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pSummary

� DNA and protein Markov chains

− simple stochastic models representing local sequential regularities,

− could be used for sequence generation as well as their discrimination,

� key terms

− the order of the chain

∗ the size of memory of the process,

∗ a trade-off between informedness and the size of the model,

− homogeneity of the chain

∗ do we distinguish different positions in the sequence?

− regularization

∗ do we learn the chain parameters purely from observed data?

∗ YES = no regularization = MLE,

∗ NO = regularization = pseudocounts, prior beliefs.
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