## Motif discovery

## Jiří Kléma

## Department of Computer Science, <br> Czech Technical University in Prague

Lecture based on Daifeng Wang's class at University of Wisconsin

## IDA

http://cw.felk.cvut.cz/wiki/courses/b4m36bin/start

## Overview

- Sequence motifs
- motivation, example,
- definition,
- (visual) representation,
- motif learning task
- a solution with expectation maximization,
- a solution with Gibbs sampling,
- untouched issues.


## Sequence motif

- A sequence motif
- nucleotide or amino-acid sequence pattern of biological significance,
- in the exon of a gene it may encode the "structural motif" of a protein.



## Zinc finger



Quick Biochemistry Basics.

## Sequence motif

- A sequence motif
- nucleotide or amino-acid sequence pattern of biological significance,
- outside of gene exons, there exist regulatory sequence motifs, e.g., DNA sequences corresponding to protein binding sites, or motifs that control mRNA biogenesis or translation,
- short coding motifs lack secondary structure and label proteins for delivery to particular parts of a cell, or mark them for phosphorylation.


## TFBS motif discovery example



[^0]Canadian Bioinformatics Workshops.

## Motif learning task

- Given:
- a set of sequences that are thought to contain occurrences of an unknown motif of interest,
- Do:
- infer a model of the motif
- predict the locations of the motif occurrences in the given sequences.
- Why:
- to understand which regions of sequences are functional, in particular:
* DNA: mechanisms by which the expression of genes are regulated,
* proteins: which regions interface with other molecules,
* mutations in these regions may be significant (e.g., non-coding variants).


## Sequence motif models

- Profile matrices (a.k.a. position weight matrices)
- serve as probabilistic motif models,
- other options: HMMs, regular expressions,
- given a set of aligned sequences, it is straightforward to construct a profile matrix characterizing a motif of interest,
- each element represents the probability of given character at a position.


Wang: Learning Sequence Motif Models Using EM, Advanced Bioinformatics course.

## Sequence logos

- Sequence logo is a graphical representation of profile matrices.


Wang: Learning Sequence Motif Models Using EM, Advanced Bioinformatics course.

## Motifs and profile matrices in unaligned sequences

- As we do not know the motif we cannot know its positions/alignment too,
- there is a hidden state $=$ where the motif starts in each training sequence,
- the task will have to be solved iteratively, e.g., with the EM algorithm.
hidden state $=$ positions

motif model

motif positions

Wang: Learning Sequence Motif Models Using EM, Advanced Bioinformatics course.

## Applying EM to the motif finding problem

- Identify the hidden variables $Z$
- remember, they are the locations of the motifs,
- define the probabilistic model with parameters $\theta$ and likelihood function

$$
P(X \mid \theta)=\sum_{Z} P(X, Z \mid \theta)
$$

- where $X$ stands for a set of sequences we learn from,
- write out the expectation (E) step
- compute the expected values of the hidden variables given current parameter values $\theta^{t}$,

$$
Q\left(\theta \mid \theta^{t}\right)=\sum_{Z} P\left(Z \mid X, \theta^{t}\right) P(X, Z \mid \theta)
$$

- write out the maximization (M) step
- determine the parameters that maximize $Q$ given the expected values of the hidden variables,
$\theta^{t+1}=\arg \max _{\theta} Q\left(\theta \mid \theta^{t}\right)$.


## Motif model (taken from MEME)

- MEME: Multiple EM for Motif Elicitation
- a motif is assumed to have a fixed width $W$,
- represented by a matrix of probabilities
* $p_{c, k}$ represents the probability of character $c$ in motif column $k$, * $p_{c, 0}$ represent the background, i.e. sequence outside the motif, - example: a motif model of length 3 below.

| $p=$ |  | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | 0.25 | 0.1 | 0.5 | 0.2 |
|  | C | 0.25 | 0.4 | 0.2 | 0.1 |
|  | G | 0.25 | 0.3 | 0.1 | 0.6 |
|  | T | 0.25 | 0.2 | 0.2 | 0.1 |

Wang: Learning Sequence Motif Models Using EM, Advanced Bioinformatics course.

## Motif starting positions (taken from MEME)

- MEME: Multiple EM for Motif Elicitation
- a matrix $Z, Z_{i, j}$ takes value 1 if the motif starts in position $j$ in sequence $i$ (0 otherwise),
- we will compute their expected values later,
- example: given DNA sequences where $L=6$ and $W=3$, possible starting positions $m=L-W+1$.

$$
Z=
$$

|  |  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| G T C A G G | seq1 | 0 | 0 | 1 | 0 |
| G A GA G T | seq2 | 1 | 0 | 0 | 0 |
| A C G G A G | seq3 | 0 | 0 | 0 | 1 |
| C C A GT C | seq4 | 0 | 1 | 0 | 0 |

Wang: Learning Sequence Motif Models Using EM, Advanced Bioinformatics course.

## Probability of a sequence knowing motif starting position

$$
P\left(X_{i} \mid Z_{i, j}, p\right)=\prod_{k=1}^{j-1} p_{c_{k}, 0} \prod_{k=j}^{j+W-1} p_{c_{k}, k-j+1} \prod_{k=j+W}^{L} p_{c_{k}, 0}
$$

$-X_{i}$ is the i -th training sequence,

- $Z_{i, j}$ is 1 if motif starts at position $j$ in sequence $X_{i}$,
$-c_{k}$ is the character at position $k$ in sequence $X_{i}$,

$$
X_{i}=\mathrm{G} \mathbf{C} \mathrm{~T} \mathbf{G T} \mathrm{~A} \mathbf{G}
$$

$$
p=\begin{array}{rrrrrl} 
& & & & & P\left(X_{i} \mid Z_{i, 3}=1, p\right)= \\
& 0 & 1 & 2 & 3 & \\
\mathrm{~A} & 0.25 & 0.1 & 0.5 & 0.2 & =p_{G, 0} \times p_{C, 0} \times p_{T, 1} \times p_{G, 2} \times p_{T, 3} \times p_{A, 0} \times p_{G, 0}= \\
\mathrm{C} & 0.25 & 0.4 & 0.2 & 0.1 & =0.25 \times 0.25 \times 0.2 \times 0.1 \times 0.1 \times 0.25 \times 0.25 \\
\mathrm{G} & 0.25 & 0.3 & 0.1 & 0.6 & =0.2 \\
\mathrm{~T} & 0.25 & 0.2 & 0.2 & 0.1 &
\end{array}
$$

## Basic EM approach

```
given: length parameter \(W\),
    training set of sequences \(X\)
\(t=0\)
set initial values for \(p^{(0)}\)
do
    \(++\mathrm{t}\)
    re-estimate \(Z^{(t)}\) from \(p^{(t-1)}\) (E-step)
    re-estimate \(p^{(t)}\) from \(Z^{(t)}\) (M-step)
until change in \(p^{(t)}<\epsilon\) (or change in likelihood is \(<\epsilon\) )
return: \(p^{(t)}, Z^{(t)}\)
```


## The E-step: computing $Z^{(t)}$

- During the E-step, we compute the expected values of $Z$ given $X$ and $p^{(t-1)}$
$-Z^{(t)}=E\left[Z \mid X, p^{(t-1)}\right]$,
- where $Z^{(t)}$ stands for expected $Z$ value at iteration $t$ and $Z$ for indicator random variable,


Wang: Learning Sequence Motif Models Using EM, Advanced Bioinformatics course.

## The E-step: computing $Z^{(t)}$

- To estimate the starting positions in $Z$ at step $t$ we apply Bayes' rule to

$$
\begin{gathered}
P\left(Z_{i, j}=1 \mid X_{i}, p^{(t-1)}\right) \\
Z_{i, j}^{(t)}=\frac{P\left(X_{i} \mid Z_{i, j}=1, p^{(t-1)}\right) P\left(Z_{i, j}=1\right)}{\sum_{k=1}^{m} P\left(X_{i} \mid Z_{i, k}=1, p^{(t-1)}\right) P\left(Z_{i, k}=1\right)}
\end{gathered}
$$

- if we assume that it is equally likely that the motif will start in any position

$$
\begin{gathered}
P\left(Z_{i, j}=1\right)=\frac{1}{m} \\
Z_{i, j}^{(t)}=\frac{P\left(X_{i} \mid Z_{i, j}=1, p^{(t-1)}\right)}{\sum_{k=1}^{m} P\left(X_{i} \mid Z_{i, k}=1, p^{(t-1)}\right)}
\end{gathered}
$$

## The E-step: computing $Z^{(t)}$

- Let us show an example of $Z^{(t)}$ computation for one sequence

$$
\begin{aligned}
& X_{i}=\mathbf{G} \mathbf{C} \mathbf{T} \mathbf{G} \mathbf{T} \mathbf{A} \mathbf{G} \\
& P^{(t-1)}=\begin{array}{rrrrr} 
& 0 & 1 & 2 & 3 \\
\mathrm{~A} & 0.25 & 0.1 & 0.5 & 0.2 \\
\mathrm{C} & 0.25 & 0.4 & 0.2 & 0.1 \\
\mathrm{G} & 0.25 & 0.3 & 0.1 & 0.6 \\
\mathrm{~T} & 0.25 & 0.2 & 0.2 & 0.1
\end{array}
\end{aligned}
$$

Wang: Learning Sequence Motif Models Using EM, Advanced Bioinformatics course.

$$
\begin{aligned}
Z_{i, 1}^{(t)} \propto P\left(X_{i} \mid Z_{i, 1}=1, p^{(t-1)}\right) & =0.3 \times 0.2 \times 0.1 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \\
Z_{i, 2}^{(t)} \propto P\left(X_{i} \mid Z_{i, 2}=1, p^{(t-1)}\right) & =0.25 \times 0.4 \times 0.2 \times 0.6 \times 0.25 \times 0.25 \times 0.25
\end{aligned}
$$

- Eventually, normalize so that $\sum_{j=1}^{m} Z_{i, j}^{(t)}=1$.


## The M-step: estimating $p$

- Recall $p_{c, k}$ represents the probability of character $c$ in $k$-th motif position
- values for $k=0$ represent the background,
- we will get them from observed values $n$ and regularizing pseudocounts $d$
- where $n_{c}$ stands for the total number of $c s$ in data,
- and $n_{c, k}$ stands for the number of $c s$ at position $k$.

$$
\begin{aligned}
& p_{c, k}^{(t)}=\frac{n_{c, k}+d_{c, k}}{\sum_{b \in\{A, C, G, T\}}\left(n_{b, k}+d_{b, k}\right)} \\
& n_{c, k}= \begin{cases}\sum_{i} \sum_{\left\{j \mid X_{i, j+k-1}=c\right\}} Z_{i, j}^{(t)} & k>0 \\
n_{c}-\sum_{j=1}^{W} n_{c, j} & k=0\end{cases}
\end{aligned}
$$

## The M-step: estimating $p$

- Let us do a small example with 3 sequences:

A C A G C A $Z_{1,1}^{(t)}=0.1, Z_{1,2}^{(t)}=0.7, Z_{1,3}^{(t)}=0.1, Z_{1,4}^{(t)}=0.1$
A G G C A G $Z_{2,1}^{(t)}=0.4, Z_{2,2}^{(t)}=0.1, Z_{2,3}^{(t)}=0.1, Z_{2,4}^{(t)}=0.4$
T C A G T C $Z_{3,1}^{(t)}=0.2, Z_{3,2}^{(t)}=0.6, Z_{3,3}^{(t)}=0.1, Z_{3,4}^{(t)}=0.1$

$$
\begin{aligned}
p_{A, 1}^{(t)} & =\frac{Z_{1,1}^{(t)}+Z_{1,3}^{(t)}+Z_{2,1}^{(t)}+Z_{3,3}^{(t)}+1}{Z_{1,1}^{(t)}+Z_{1,2}^{(t)}+\cdots+Z_{3,3}^{(t)}+Z_{3,4}^{(t)}+4}=0.24 \\
p_{C, 2}^{(t)} & =\frac{Z_{1,1}^{(t)}+Z_{1,4}^{(t)}+Z_{2,3}^{(t)}+Z_{3,1}^{(t)}+1}{Z_{1,1}^{(t)}+Z_{1,2}^{(t)}+\cdots+Z_{3,3}^{(t)}+Z_{3,4}^{(t)}+4}=0.21
\end{aligned}
$$

## What we have left untouched

- We only solved OOPS (one motif occurrence per sequence)
- this is not the general case,
- ZOOPS (zero or one motif per sequence) is more general
* EM includes another parameter $\gamma$ for prior probability that a sequence contains a motif,
- any number of repeats (ANR) is the most general approach,
- choosing the width of the motif,
- finding multiple motifs in a group of sequences,
- choosing good starting points for the parameters,
- using background knowledge to bias the parameters.


## Gibbs Sampling: an alternative to EM

- EM can get trapped in local maxima
- we may try different (perhaps random) initial parameters to alleviate this,
- Gibbs sampling exploits randomized search to a much greater degree
- we can view it as stochastic analogy of EM for this task,
- in theory, Gibbs sampling is less susceptible to local maxima than EM,
- Gibbs will converge to a global maximum, in the limit,
- probably not in a reasonable amount of time.
- in general, Gibbs sampling is a
- Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which are approximated from a specified multivariate probability distribution, when direct sampling is difficult.


## Markov Chain Monte Carlo (MCMC) algorithms

- a Monte Carlo method
- repeated random sampling serving to obtain numerical results,
- a Markov chain
- a stochastic model of a sequence of events with limited memory,
- consider a Markov chain in which, on each time step, a grasshopper randomly chooses to stay in its current state, jump one state left or jump one state right


Koller and Friedman: Probabilistic Graphical Models, MIT Press.

- $P^{(t)}(u)$ is the probability of being in state $u$ at time $t$ in the random walk
* $P^{(t+1)}(u)=\sum_{v} P^{(t)}(v) \tau(u \mid v)$, where $\tau$ is the transition probability,
* $P^{(t+1)}(u) \approx P^{(t)}(u)$ for large $t$, becomes stationary.


## MCMC with Gibbs sampling

- Gibbs sampling is a special case of MCMC in which
- Markov chain transitions involve changing one variable at a time,
- transition probability is conditional probability of the changed variable given all others,
- we sample the joint distribution of a set of random variables $P\left(X_{1}, \ldots, X_{n}\right)$ by iteratively sampling from $P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right)$.
- an example
- Gibbs sampling for approximate inference in Bayesian networks,
- the joint distribution is not directly available,
- however, the network provides the conditional probabilities.


## Gibbs sampling for motif learning

- In the EM approach we maintained a distribution $Z_{i}^{(t)}$ over the possible motif starting points for each sequence at iteration $t$,
- now, we will maintain a specific motif starting point $a_{i}$ for each sequence, but we will keep randomly resampling them,
- Markov chain states will be the configurations of starting positions ( $a_{i}$ values for a set of random variables $\left\{A_{1}, \ldots, A_{n}\right\}$ ),
- transitions between states correspond to changing selected starting positions.


Wang: Learning Sequence Motif Models Using EM, Advanced Bioinformatics course.

## Sampling with MCMC in general

- Want to find the mode of a certain distribution $\arg \max _{x} P(X)$,
- and it is intractable to do it directly,
- construct a Markov chain with
- states corresponding to configurations of $X$,
- stationary distribution equal to $P(X)$,
- through MCMC we can reconstruct the distribution and find the mode,
- the transition probabilities must keep the condition of detailed balance
- $P(u) \tau(v \mid u)=P(v) \tau(u \mid v)$ for all pairs of states,
- then if we perform MCMC with $N$ samples and $\operatorname{count}(u)$ is the number of times we are in state $u$ it holds that

$$
\frac{1}{N} \lim _{N \rightarrow \infty} \operatorname{count}(u)=P(u)
$$

## Estimating the state probability and $p$

- The probability of a state is given by

$$
P(u) \propto \prod_{c} \prod_{j=1}^{W}\left(\frac{p_{c, j}}{p_{c, 0}}\right)^{n_{c, j}(u)}
$$

- where $n_{c, j}(u)$ is the count of $c$ in motif position $j$,
- $p_{c, j}$ is the probability of $c$ in motif position $j$ and $p_{c, 0}$ its background probability.


Wang: Learning Sequence Motif Models Using EM, Advanced Bioinformatics course.

## Estimating the state probability and $p$

- Recall $p_{c, k}$ represents the probability of character $c$ in $k$-th motif position, $k=0$ represents the background

EM:

$$
p_{c, k}^{(t)}=\frac{n_{c, k}+d_{c, k}}{\sum_{b \in\{A, C, G, T\}}\left(n_{b, k}+d_{b, k}\right)}
$$

Gibbs sampling:

$$
\begin{aligned}
p_{c, k}^{(t)} & =\frac{n_{c, k}+d_{c}}{N-1+d_{b}} \\
p_{c, 0} & =\frac{n_{c, 0}+d_{c}}{(N-1)(L-W)+d_{b}}
\end{aligned}
$$

- where $N$ is the number of sequences,
- $L$ is the sequence length and $W$ is motif length.


## Sampling new motif positions

- For sampling a new motif position in sequence $i$,
- Estimate p from all sequences except sequence $i$,
- For each possible starting position $A_{i}=j$ compute the likelihood ratio

$$
L R(j)=\frac{\prod_{k=j}^{j+W-1} p_{c_{k}, k-j+1}}{\prod_{k=j}^{j+W-1} p_{c_{k}, 0}}
$$

- Randomly select a new starting position $A_{i}=j$ with probability

$$
\frac{L R(j)}{\sum_{k \in\{\text { positions }\}} L R(k)}
$$

## Gibbs sampling algorithm for motif finding

```
given: length parameter W
    training set of sequences
choose random positions for a
do
    pick a sequence X 
    predictive update step:
        estimate p given current motif positions a
    (using all sequences but }\mp@subsup{X}{i}{}\mathrm{ )
    sampling step:
    sample a new motif position }\mp@subsup{a}{i}{}\mathrm{ for }\mp@subsup{X}{i}{
until convergence
return: p, a
```


## Gibbs sampling: performance



Lawrence et al.: Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment", Science.

## Summary

- Motif discovery
- local multiple alignments (compare with MSA discussed earlier),
- EM and Gibbs sampling discussed
- many other methods exist,
- including those that extract from MSA such as EMOTIF or PRINTS,
- in practice, motif finders often fail
- motif signal could be too weak,
- large search space with many local maxima,
- improvements through utilization of background knowledge
- tying parameters,
- (Dirichlet) priors.


[^0]:    5' - TCTCTCTCCACGGCTAATTAGGTGATCATGAAAAAATGAAAAATTCATGAG FAAAGAGTCAGACATCGAAACATACAT
    5'- atGGCAGAATCACTTTAAAACGTGGCCCCACCCGCTGCACCCTGTGCATTTTGTACGTTACTGCG AAATGACTCAACG $\xrightarrow{\text { HIS7 }}$

    5*- CACATCCAACGAATCACCTCACCGTTATCGTGACTCACTTTCTTTCGCATCGCCGAAGTGCCATAAAAAAATATTTTTT
    5'- tGCGAAChaAmGAGTCATTACAACGAGGAaATAGAAGAAAATGAAAAATTTTCGACAAAATGTATAGTCATTTCTATC
    
    
    5'- GGCGCCACAGTCCGCGTT TGGTT ATCCGGCTGACTCATTCTGACTCTTTT TTGGAAAGTGTGGCATGTGCTTCACACA

