Inference of phylogenetic trees

Jiří Kléma

Department of Computer Science,
Czech Technical University in Prague
Lecture based on Mark Craven's class at University of Wisconsin

IDA

http://cw.felk.cvut.cz/wiki/courses/b4m36bin/start

Overview

- Phylogenetic inference: task definition,
- basics from graph theory,
- motivation for phylogenetic analysis
- example trees,
- three general types of methods
- distance: find tree that accounts for estimated evolutionary distances,
- parsimony: find the tree that requires minimum number of changes to explain the data,
- maximum likelihood: find the tree that maximizes the likelihood of the data.

Phylogenetic inference: task definition

- Given
- data characterizing a set of species/genes,
- earlier: morphological data,
- today: nucleotide sequences or amino acid sequences,
- Do
- infer a phylogenetic tree that accurately characterizes the evolutionary lineages among the species/genes,
- phylogenesis = the evolutionary development and diversification of a species or group of organisms,
- limitations: homoplasy, horizontal gene transfer, etc.

Phylogenetic tree basics

- Tree
- an undirected graph without cycles,
- a directed graph whose underlying undirected graph is a tree (often also $\forall v$: indegree $(\mathrm{v}) \leq 1$ to avoid polytrees with many roots),
- phylogenetic tree
- leaves $=$ things (genes, species, individuals/strains) being compared,
- internal nodes = hypothetical ancestral units,
- taxon (taxa plural) = species and broader classifications of organisms,
- rooted and unrooted trees
- a directed tree has a root
* the root represents the common ancestor,
* path from root to a node represents an evolutionary path,
- an undirected tree is unrooted
* specifies relationships among things, but not evolutionary paths.

Rooted and unrooted trees

- The role of root
- an extra node that tells us the direction of evolution,
- the number of possible trees for n leaves (sequences) quickly grows
- unrooted: $\prod_{i=3}^{n}(2 i-5)$,
- rooted: $(2 n-3) \prod_{i=3}^{n}(2 i-5)$.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Why construct phylogenetic trees?

- to gain knowledge of biologial diversity from raw data
- and organize it in a structured (hierarchical) way,
- to understand evolutionary lineage of various species
- straightforward reconstruction, see tree paths from the root to a leaf,
- to understand how various functions evolved and which loci underlie it
- may help extract functional (e.g., gene-trait association) signal from genomic data,
- to inform multiple alignments
- multiple sequence alignments often used to create a phylogenetic tree,
- the knowledge of phylogeny helps to improve multiple sequence alignments (guide trees),
- to identify what is most conserved/important in some class of sequences
- those that keep relatively unchanged far back up the phylogenetic tree.

Example tree: tracing the evolution of the Ebola virus

- Ebola virus: a lethal human pathogen
- 2014 Ebola epidemic in Africa
- until recently the largest case in 1976 (318 cases),
- outbreak reported in Feb 2014,
- 11,315 deaths, fatality rate 78%,
- key questions
- where did the pathogen come from?
- how is it evolving?
- In a 2014 Science paper
- whole genome sequence alignment of 99 Ebola virus genomes from 78 patients in Sierra Leone,
- also three published Guinean samples and 20 genomes from earlier outbreaks.

Example tree: tracing the evolution of the Ebola virus

Gire et al., Science 2014.

Example tree: tracing the evolution of the Ebola virus

- Insights gained from sequence comparison [Gire et al., Science 2014]
- "Genetic similarity across the sequenced 2014 samples suggests a single transmission from the natural reservoir, followed by human-tohuman transmission during the outbreak.",
- ". . . the Sierra Leone outbreak stemmed from the introduction of two genetically distinct viruses from Guinea around the same time ...",
- ". . . the three most recent outbreaks $(2002,2007,2014)$ represent an independent zoonotic event from the same genetically diverse viral population in its natural reservoir ...".

Distance-based approaches

- given: an $n \times n$ matrix M, where $M_{i j}$ is the distance between taxa i and j,
- do: build an edge-weighted tree such that the distances between leaves i and j correspond to $M_{i j}$.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Where do we get distances?

- Commonly obtained from sequence alignments
- in alignment of sequence i with sequence $j, \operatorname{dist}_{i j}=f_{i j}$

$$
f_{i j}=\frac{\# \text { mismatches }}{\# \text { matches }+\# \text { mismatches }}
$$

- to correct for multiple substitutions at a single position
- use Jukes-Cantor model for mutation rates

$$
\operatorname{dist}_{J C}(i . j)=-\frac{3}{4} \ln \left(1-\frac{4}{3} f_{i j}\right)
$$

The molecular clock hypothesis and ultrametric data

- In the 1960s, sequence data were accumulated for small, abundant proteins such as globins, cytochromes c, and fibrinopeptides. Some proteins appeared to evolve slowly, while others evolved rapidly.
- Linus Pauling, Emanuel Margoliash and others proposed the hypothesis of a molecular clock: For every given protein, the rate of molecular evolution is approximately constant in all evolutionary lineages.
- the molecular clock assumption is not generally true: selection pressures vary across time periods, organisms, genes within an organism, regions within a gene,
- if it does hold, then the data is said to be ultrametric
- this property simplifies construction of rooted phylogenetic trees.

The molecular clock hypothesis

Pevsner: Bioinformatics and Functional Genomics, Wiley, 2009.

Distance metrics

- Properties of distance metrics
- identity: $\operatorname{dist}\left(x_{i}, x_{i}\right)=0$,
- symmetry: $\operatorname{dist}\left(x_{i}, x_{j}\right)=\operatorname{dist}\left(x_{j}, x_{i}\right)$,
- triangle inequality: $\operatorname{dist}\left(x_{i}, x_{j}\right) \leq \operatorname{dist}\left(x_{i}, x_{k}\right)+\operatorname{dist}\left(x_{k}, x_{j}\right)$,
- non-negativity: $\operatorname{dist}\left(x_{i}, x_{j}\right) \geq 0$ (follows from the previous properties),
- semimetric if the triangle equality does not hold,
- ultrametric property makes the triangle equality condition stronger
- ultrametric: $\operatorname{dist}\left(x_{i}, x_{j}\right) \leq \max \left(\operatorname{dist}\left(x_{i}, x_{k}\right), \operatorname{dist}\left(x_{k}, x_{j}\right)\right)$.

The molecular clock hypothesis and ultrametric data

- Ultrametric data
- for any triplet of sequences, i, j, k, the distances are either all equal, or two are equal and the remaining one is smaller.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

The UPGMA method

- Unweighted Pair Group Method using Arithmetic Averages (UPGMA),
- given ultrametric data, UPGMA will reconstruct the tree T that is consistent with the data,
- basic idea
- iteratively pick two taxa/clusters and merge them.
- create new node in tree for merged cluster.
- distance $d_{i j}$ between clusters C_{i} and C_{j} of taxa is defined as
- average distance between pairs of taxa from each cluster
$-d_{i j}=\frac{1}{\left|C_{i}\right|\left|C_{j}\right|} \sum_{p \in C_{i}, q \in C_{j}} d_{p q}$
- given a new cluster C_{k} formed by merging C_{i} and C_{j},
- we can calculate the distance between C_{k} and any other cluster C_{l} as follows

$$
-d_{k l}=\frac{d_{i l}\left|C_{i}\right|+d_{j l}\left|C_{j}\right|}{\left|C_{i}\right|+\left|C_{j}\right|}
$$

The UPGMA algorithm

- assign each taxon to its own cluster,
- define one leaf for each taxon, place it at height 0 ,
- while more than two clusters
- determine two clusters i, j with smallest $d_{i j}$,
- define a new cluster $C_{k}=C_{i} \cup C_{j}$,
- define a node k with children i and j, place it at height $d_{i j} / 2$,
- replace clusters i and j with k,
- compute distance between k and other clusters,
- join last two clusters, i and j, by root at height $d_{i j} / 2$.

UPGMA example

initial
state

	A	B	C	D	E
A	0	8	8	5	3
B		0	3	8	8
C			0	8	8
D				0	5
E					0

	AE	B	C	D
AE	0	8	8	5
B		0	3	8
C			0	8
D				0

A E D B C

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

UPGMA example

after two merges
after three merges

Another distance-based algorithm: neighbor joining

- unlike UPGMA
- does not make molecular clock assumption,
- produces unrooted trees,
- it assumes additivity
- distance between a pair of leaves is sum of lengths of edges connecting them,

$$
\forall x, y, u, v \text { (leaves) }: d(x, y)+d(u, v) \leq \max (d(x, u)+d(y, v), d(y, u)+d(x, v))
$$

- like UPGMA, constructs a tree by iteratively joining subtrees, however
- the pair of subtrees to be merged on each iteration is selected differently,
- distances are updated differently after each merge too.

Picking pairs of nodes to join in neighbor joining (NJ)

- at each step, we pick a pair of nodes to join
- should we pick a pair i and j with minimal distance $d_{i j}$?
- suppose the real tree below, we aim to pick the first pair of nodes to join
- wrong decision to join A and B,
- we need to consider distance of the pair to other leaves too,
- pick a pair of nodes that minimizes $D_{i j}$

$$
\begin{aligned}
D_{i j} & =d_{i j}-\left(r_{i}+r_{j}\right) \\
r_{i} & =\frac{1}{|L|-2} \sum_{k \in L} d_{i k}
\end{aligned}
$$

where L is the set of leaves

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Updating distances in neighbor joining

- the joined pair (i, j) will be replaced by a new internal node k,
- its distance to another node m is given by

$$
d_{k m}=\frac{1}{2}\left(d_{i m}+d_{j m}-d_{i j}\right)
$$

- the distance from a leaf to its parent node calculated in the same way

$$
d_{i k}=\frac{1}{2}\left(d_{i j}+d_{i m}-d_{j m}\right)
$$

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Updating distances in neighbor joining

- the previous update works perfectly if data are strictly additive,
- if not, a more robust method applies
- instead of single m, take into account the distance to all other leaves

$$
\begin{aligned}
d_{i k} & =\frac{1}{2}\left(d_{i j}+r_{i}-r_{j}\right) \\
r_{i} & =\frac{1}{|L|-2} \sum_{m \in L} d_{i m}
\end{aligned}
$$

- where L is the set of leaves.

Neighbor joining algorithm

```
define the tree T = set of leaf nodes
L=T
while more than two subtrees in T
    pick the pair i, j in L with minimal }\mp@subsup{D}{ij}{
    add to }T\mathrm{ a new node }k\mathrm{ joining i and j
    determine new distances dik, djk
    determine d}\mp@subsup{d}{km}{}\mathrm{ for all other m in L
    remove i and j from L and insert k
    (treat it like a leaf)
```

join two last subtrees i and j with edge of length $d_{i j}$

- if the data is additive (and these distances represent real distances), then neighbor joining will identify the correct tree,
- otherwise, the method may not recover the correct tree, but it may still be reasonable heuristics,
- neighbor joining is commonly used.

Testing for additivity

- remember the additivity property

$$
\forall i, j, k, l(\text { leaves }): d(i, j)+d(k, l) \leq \max (d(i, k)+d(j, l), d(i, l)+d(j, k))
$$

- for every set of four leaves, i, j, k, and l, two of the distances $d_{i j}+d_{k l}, d_{i k}+d_{j l}$ and $d_{i l}+d_{j k}$ must be equal and not less than the third.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Rooting trees

- finding a root in an unrooted tree sometimes accomplished with an outgroup,
- a species known to be (far) more distantly related to remaining species,
- edge joining the outgroup to the rest of the tree is best candidate for root position,
- no outgroup \rightarrow pick the midpoint of the longest chain of consecutive edges.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Parsimony-based approaches

- parsimony: find the tree that explains the data with minimum changes,
- given: character-based data,
- do: find tree that explains the data with a minimal number of changes,
- focus is on finding the right tree topology, not on estimating branch lengths,
- there are various trees that could explain the phylogeny of the sequences $A A G$, AAA, GGA, AGA including the two below,
- parsimony prefers the first tree because it requires fewer substitution events.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Parsimony-based approaches

- usually these approaches involve two separate components
- a procedure to find the minimum number of changes needed to explain the data for a given tree topology
* we will assume that positions are independent and compute the minimum number of changes for each position separately,
* at first, we will treat the costs of these changes uniformly,
* then, we will work with different costs for different changes,
- a search through the space of trees
* cannot be exhaustive, too many trees,
* a heuristic method of nearest neighbor interchange.

Finding minimum number of changes for a given tree

- brute force approach
- for each possible assignment of states to the internal nodes, calculate the number of changes,
- report the minimum number of changes found,
- runtime is $\mathcal{O}\left(N k^{N}\right)$
$\mathrm{k}=$ number of characters (4 for DNA), $\mathrm{N}=$ number of leaves,
- Fitch's two-pass algorithm
- firstly traverses tree from leaves to root determining set of possible states (e.g. nucleotides) for each internal node,
- secondly traverses tree from root to leaves picking ancestral states for internal nodes,
- deals with the uniform costs of changes,
- finds the best assignment in $\mathcal{O}(N k)$.

Fitch's algorithm: step $1=$ post-order

- do a post-order (from leaves to root) traversal of tree,
- determine possible states R_{i} of internal node i with children j and k

$$
R_{i}=\left\{\begin{array}{l}
R_{j} \cup R_{k}, \text { if } R_{j} \cap R_{k}=\emptyset \\
R_{j} \cap R_{k}, \text { otherwise }
\end{array}\right.
$$

- this step calculates the number of changes required $\#$ of changes $=\#$ union operations.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Fitch's algorithm: step $2=$ pre-order

- do a pre-order (from root to leaves) traversal of tree,
- select state r_{j} of internal node j with parent i

$$
r_{j}=\left\{\begin{array}{l}
r_{i}, \text { if } r_{i} \in R_{j} \\
\text { arbitrary state } \in R_{j}, \text { otherwise }
\end{array}\right.
$$

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Weighted parsimony

- instead of assuming all state changes are equally likely, use different costs $S(a, b)$ for different changes,
- the modification of Fitch's algorithm proposed by Sankoff \& Cedergren,
- 1st post-order step of algorithm propagates costs up through tree,
- the goal is to determine cost $R_{i}(a)$ of assigning character a to node i,
- for leaves

$$
R_{i}(a)=\left\{\begin{array}{l}
0, \text { if a is character at leaf, } \\
\infty, \text { otherwise }
\end{array}\right.
$$

- for an internal node i with children j and k

$$
R_{i}(a)=\min _{b}\left(R_{j}(b)+S(a, b)\right)+\min _{b}\left(R_{k}(b)+S(a, b)\right)
$$

Example: weighted parsimony

$$
\begin{aligned}
& R_{3}[A]=\infty, R_{3}[C]=\infty, R_{3}[G]=0, R_{3}[T]=\infty \\
& R_{4}[A]=\infty, R_{4}[C]=\infty, R_{4}[G]=\infty, R_{4}[T]=0 \\
& R_{2}[A]=R_{3}[G]+S(A, G)+R_{4}[T]+S(A, T) \\
& R_{2}[T]=R_{3}[G]+S(T, G)+R_{4}[T]+S(T, T) \\
& R_{5}[A]=0, R_{5}[C]=\infty, R_{5}[G]=\infty, R_{5}[T]=\infty \\
& R_{1}[A]=\min \left(R_{2}[A]+S(A, A), \quad \ldots, \quad R_{2}[T]+S(A, T)\right)+R_{5}[A]+S(A, A) \\
& R_{1}[T]=\min \left(R_{2}[A]+S(T, A), \quad \ldots, \quad R_{2}[T]+S(T, T)\right)+R_{5}[A]+S(T, A) \\
& \text { Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576. }
\end{aligned}
$$

Weighted parsimony: step $2=$ pre-order

- do a pre-order (from root to leaves) traversal of tree
- for root node: select minimal cost character,
- for each internal node: select the character that resulted in the minimum cost explanation of the character selected at the parent,

Example: weighted parsimony

- Consider the two simple phylogenetic trees shown below,
- and the symmetric cost matrix for assessing nucleotide changes,
- the tree on the right has a cost of 0.8 ,

	a	c	g	t
a	0	0.8	0.2	0.9
c	0.8	0	0.7	0.5
g	0.2	0.7	0	0.1
t	0.9	0.5	0.1	0

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

- show how the weighted parsimony determines the cost of the tree on the left,
- what are the minimal cost characters for the internal nodes in the tree?
- which of the two trees would the maximum parsimony approach prefer?

Example: weighted parsimony

	a	c	g	t
a	0	0.8	0.2	0.9
c	0.8	0	0.7	0.5
g	0.2	0.7	0	0.1
t	0.9	0.5	0.1	0

$R_{3}(a)=0+0.8=0.8$
$R_{3}(c)=0.8+0=0.8$
$R_{3}(g)=0.2+0.7=0.9$
$R_{3}(t)=0.9+0.5=1.4$
$R_{1}(a)=0.9+\min \{0.8, \quad 0.8+0.8, \quad 0.2+0.9, \quad 0.9+1.4\}=1.7$
$R_{1}(c)=0.5+\min \{0.8+0.8, \quad 0.8, \quad 0.7+0.9, \quad 0.5+1.4\}=1.3$
$R_{1}(g)=0.1+\min \{0.2+0.8, \quad 0.7+0.8, \quad 0.9, \quad 0.1+1.4\}=1.0$
$R_{1}(t)=0+\min \{0.9+0.8, \quad 0.5+0.8, \quad 0.1+0.9, \quad 1.4\}=1.0$
Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

- The minimal cost characters for node 1 are either g or t . The tree costs 1.0.
- The minimal cost character for node 3 is g .
- The maximum parsimony approach would prefer the other tree ($1.0>0.8$).

Exploring the space of trees: nearest neighbor interchange

- For any internal edge in a tree
- there are 3 ways the four subtrees can be grouped,
- nearest neighbor interchanges move from one grouping to another.
- it represents the simplest tree structure rearrangement (only local).

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Heuristic hill-climbing with nearest neighbor interchange

```
given: set of leaves L
create an initial tree t incorporating all leaves in }
best-score = parsimony algorithm applied to t
repeat
    for each internal edge e in t
        for each nearest neighbor interchange
            t ^ { \prime } \leftarrow ~ t r e e ~ w i t h ~ i n t e r c h a n g e ~ a p p l i e d ~ t o ~ e d g e ~ e ~ i n ~ t ~
            score = parsimony algorithm applied to t'
            if score < best-score
                best-score = score
                best-tree = t'
    t = best-tree
until stopping criteria met
```


Exact method: branch and bound

- Each partial tree represents a set of complete trees,
- parsimony score on a partial tree $=$ lower bound on the best score in the set,
- search by repeatedly selecting the partial tree with the lowest lower bound.

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

Exact method: branch and bound

```
given: set of leaves L
initialize Q with a partial tree with 3 leaves from L
repeat
    t\leftarrow tree in Q with lowest lower bound
    if t has incorporated all leaves in L
        return t
    else
        create new trees
        (by adding next leaf from L to each branch of t)
        compute lower bound for each tree
        put trees in Q sorted by lower bound
```


Exact method: branch and bound (improved version)

```
given: set of leaves L
use heuristic method to grow initial tree t'
initialize Q with a partial tree with 3 leaves from L
repeat
    t tree in Q with lowest lower bound
    if t has incorporated all leaves in L
        return t
    else
        create new trees
        (by adding next leaf from L to each branch of t)
        for each new tree n
        if lower-bound(n) < score(t')
        put n in Q sorted by lower bound
```


Comments on parsimony methods

- Branch and bound is a complete search method
- guaranteed to find optimal solution,
- may be much more efficient than exhaustive search
- in the worst case, it is no better,
- branch and bound efficiency depends on
- the tightness of the lower bound,
- the quality of the initial tree,
- we described parsimony calculations in terms of rooted trees
- but we described the search procedures in terms of unrooted trees,
- it is not a big problem as
* unweighted parsimony: minimum cost is independent of where root is located,
* weighted parsimony: minimum cost is independent of root if substitution cost is a metric.

Probabilistic phylogenetic methods

- A probabilistic alternative to parsimony
- instead of cost $S(a, b)$ of a substitution occurring along a branch, it uses a probability $P($ child $=a \mid$ parent $=b)$,
- for a given tree, instead of finding a minimal cost assignment to the ancestral nodes, it sums the probabilities of all possible ancestral states,
- instead of finding a tree with minimum cost, it finds a tree that maximizes likelihood (probability of the data given the tree),
- this approach aims to minimize the effect of implicit parsimony simplifications
- substitution costs are rather arbitrary and the most parsimonious tree critically depends on them,
- parsimony methods require assignments of character states to the ancestral nodes, the best assignment does not have to be the true one.

Probabilistic model setup

- We observe n sequences x^{1}, \ldots, x^{n},
- we are given a tree T and want to model the likelihood $P\left(x^{1}, \ldots, x^{n} \mid T\right)$ - likelihood $=$ probability of observation (sequences) given model (tree),
- for simplicity, consider that our sequences are of length 1 (just one character),
- to generalize to longer sequences, assume independence of each position
- each column of an ungapped multiple alignment tretaed independently,
- probability of sequences $=$ product of probability of each position/column,
- the states of internal nodes given by random variables $X^{n+1}, \ldots, X^{2 n-1}$
- assume a rooted binary tree,
- the branch lengths will be ignored for the sake of simplicity
$-P($ child $=a \mid$ parent $=b)$ instead of $P($ child $=a \mid$ parent $=b$, time $)$.

Probabilistic model setup

- The probability of any particular configuration of states at all tree nodes

$$
P\left(x^{1}, \ldots, x^{2 n-1} \mid T\right)=q_{x^{2 n-1}} \prod_{i=1}^{2 n-2} P\left(x^{i} \mid x^{\alpha(i)}\right)
$$

- $q_{x^{2 n-1}}$ is the prior probability of the state of the root node,
$-\alpha(i)$ is the index of the parent node of node i,
- key assumption
- state of node i is conditionally independent of the states of its ancestors given the state of its parent,
- we only care about the probability of the observed (extant) sequences
- need to marginalize (sum over possible values of ancestral states) to obtain the likelihood

$$
P\left(x^{1}, \ldots, x^{n} \mid T\right)=\sum_{x^{n+1}, \ldots, x^{2 n-1}} q_{x^{2 n-1}} \prod_{i=1}^{2 n-2} P\left(x^{i} \mid x^{\alpha(i)}\right)
$$

Felsenstein's algorithm

- There is an exponential number of terms in the previous likelihood sum!
- dynamic programming to the rescue once again!
- subproblem: $P\left(L_{k} \mid a\right)$: probability of the leaves below node k, given that the residue at k is a,
- Recurrence:

$$
\begin{aligned}
P\left(L_{k} \mid a\right) & =\sum_{b, c} P(b \mid a) P\left(L_{i} \mid b\right) P(c \mid a) P\left(L_{j} \mid c\right)= \\
& =\sum_{b} P(b \mid a) P\left(L_{i} \mid b\right) \sum_{c} P(c \mid a) P\left(L_{j} \mid c\right)
\end{aligned}
$$

- where i and j are the children nodes of k,
$-b$ and c represent the states of node i and node j, respectively.

Felsenstein's algorithm

- Initialize: $k=2 n-1$
- Recursion:
- if k is a leaf node

$$
P\left(L_{k} \mid a\right)=\left\{\begin{array}{l}
1, \text { if } a=x^{k} \\
0, \text { otherwise }
\end{array}\right.
$$

- else, compute $P\left(L_{i} \mid a\right)$ and $P\left(L_{j} \mid a\right)$ for all a at daughters i and j

$$
P\left(L_{k} \mid a\right)=\sum_{b} P(b \mid a) P\left(L_{i} \mid b\right) \sum_{c} P(c \mid a) P\left(L_{j} \mid c\right)
$$

- Termination:
- likelihood is equal to

$$
\sum_{a} P\left(L^{2 n-1} \mid a\right) q_{a}
$$

Concluding remarks on maximum likelihood methods

- Very similar to the weighted parsimony case,
- main differences are at
- leaf nodes,
- minimization versus summation for internal nodes,
- can it be used to infer ancestral states as well?
- instead of summing, we would maximize,
- as in the parsimony case, we would need to keep track of the maximizing assignment,
- substitution probabilities $P(a \mid b)$ can be derived from principled mathematical models and/or estimated from data.

What is probability for the following set of residues?

	A	C	G	T
A	0.7	0.1	0.1	0.1
C	0.1	0.7	0.1	0.1
G	0.1	0.1	0.7	0.1
T	0.1	0.1	0.1	0.7

Assume the above conditional probability matrix
$\mathrm{P}(\mathrm{b} \mid \mathrm{a})$ for all branches

	A	C	G	T
$P\left(L_{1} \mid x\right)$	1	0	0	0
$P\left(L_{2} \mid x\right)$	0	0	0	1
$P\left(L_{3} \mid x\right)$	0	0	1	0
$P\left(L_{4} \mid x\right)$	0.07	0.01	0.01	0.07
$P\left(L_{5} \mid x\right)$	0.0058	0.0022	0.0154	0.0058

Marc Craven, BMI/CS 576, www.biostat.wisc.edu/bmi576.

What is probability for the following set of residues?

- In leaf nodes the simple 0/1 rule,
- in internal nodes

$$
\begin{aligned}
& P\left(L_{4} \mid A\right)=P(A \mid A) P\left(L_{1} \mid A\right) P(T \mid A) P\left(L_{2} \mid T\right)=0.7 \times 1 \times 0.1 \times 1=0.07 \\
& P\left(L_{4} \mid C\right)=P(A \mid C) P\left(L_{1} \mid A\right) P(T \mid C) P\left(L_{2} \mid T\right)=0.1 \times 1 \times 0.1 \times 1=0.01
\end{aligned}
$$

- the other options in the leaf nodes lead to trivial zero probabilities and do not influence the sum,

$$
\begin{aligned}
P\left(L_{5} \mid A\right) & =P(G \mid A) P\left(L_{3} \mid G\right) \sum_{b \in\{A C G T\}} P(b \mid A) P\left(L_{4} \mid b\right)= \\
& =0.1 \times 1(0.7 \times 0.07+0.1 \times 0.01+0.1 \times 0.01+0.1 \times 0.07)=0.0058
\end{aligned}
$$

- the probability of residues given the tree (with the uniform nucleotide priors)

$$
\sum_{x} P\left(L_{5} \mid x\right) q_{x}=0.25(0.0058+0.0022+0.0154+0.0058)=0.0073
$$

