Protein Threading

BMI/CS 776
www.biostat.wisc.edu/bmi776/
Spring 2017
Anthony Gitter
gitter@biostat.wisc.edu

Goals for Lecture

Key concepts

- threading prediction task
- threading search task
- template models
- branch and bound search for threading

Protein Threading

- Generalization of homology modeling
- homology modeling: align sequence to sequence
- threading: align sequence to structure (templates)
- Key ideas
- limited number of basic folds found in nature
- amino acid preferences for different structural environments provide sufficient information to choose among folds

A Core Template

protein A threaded on template

protein B threaded on template

Components of a Threading Approach

- Library of core fold templates
- Objective function to evaluate any particular placement of a sequence in a core template
- Method for searching over space of alignments between sequence and each core template
- Method for choosing the best template given alignments

Task Definition:
 Prediction Via Threading

- Given:
- a protein sequence
- a library of core templates

- Return: the best alignment of the sequence to a template

Task Definition: Threading Search

- Given:
- a protein sequence
- a single template

Return: the best alignment of the sequence to the template

Threading Objective Functions

- Possible sequence-template alignments are scored using a specified objective function
- Objective function scores the sequence-structure compatibility between
- sequence amino acids
- their corresponding positions in a core template
- It takes into account factors such as
- amino acid preferences for solvent accessibility
- amino acid preferences for particular secondary structures
- interactions among spatially neighboring amino acids

Core Template with Interactions

Figure from R. Lathrop et al. Analysis and Algorithms for Protein Sequence-Structure Alignment.

- Small circles represent amino acid positions
- Thin lines indicate interactions represented in model

One Threading

Figure from R. Lathrop et al. Analysis and Algorithms for Protein Sequence-Structure Alignment.

- A threading can be represented as a vector \vec{t}, where each element indicates the index of the amino acid placed in the first position of each core segment

Threading Sets

end of interval

- A set of potential threadings can be represented by bounds on the first position of each core segment
$T=\left\{\vec{t} \mid b_{i} \leq t_{i} \leq d_{i}, b_{j} \leq t_{j} \leq d_{j}, b_{k} \leq t_{k} \leq d_{k}, b_{l} \leq t_{l} \leq d_{l}\right\}$

Possible Threadings

Figure from R. Lathrop et al. Analysis and Algorithms for Protein Sequence-Structure Alignment.

- Finding the optimal alignment is NP-hard in the general case where
- there are variable length gaps between the core segments, and
- the objective function includes interactions between neighboring (in 3D) amino acids

A General Pairwise Objective Function

- General objective function with pairwise interactions is:

$$
f(\vec{t})=\underbrace{\sum_{i} g_{1}\left(i, t_{i}\right)}_{\begin{array}{c}
\text { scores for } \\
\text { individual segments }
\end{array}}+\underbrace{\sum_{i} \sum_{j>i} g_{2}\left(i, j, t_{i}, t_{j}\right)}_{\text {scores for segment interactions }}
$$

- We wish to minimize this function

Searching the Space of Alignments

- If interaction terms between amino acids are not allowed
- dynamic programming
- will find optimal alignment efficiently
- If interaction terms allowed
- heuristic methods
- fast
- might not find the optimal alignment
- exact methods (e.g. branch \& bound)
- if they return an alignment, it will be optimal
- might take exponential time
- might fail due to time or space limits

Branch and Bound Abstractly

- 3 components
- A data structure for compactly representing a set of potential solutions
- May be a very large set
- An algorithm for computing a lower bound on the score obtained by any member of a set
- In general, should not explicitly examine all members of the set
- An algorithm for splitting a set into subsets

Branch and Bound Search

initialize Q with one entry representing the set of all threadings repeat
$l \leftarrow$ set in Q with lowest lower bound
if l contains only 1 threading
return l
else
split l into smaller subsets
compute lower bound for each subset
put subsets in Q sorted by lower bound

Branch and Bound Illustrated

- A hypothetical branch and bound search
- each circle illustrates the space of possible threadings
- solid lines indicate splits made in previous steps
- dashed lines indicate splits made in current step
- numbers indicate lower bounds for newly created subsets
- arrows show the set that has been split

Figure from R. Lathrop and T. Smith. Global Optimum Protein Threading with Gapped Alignment and Empirical Pair Score Functions. Journal of Molecular Biology 255:641-665, 1996.

Branch and Bound Search

- Two key issues
- how to compute the lower bound for a set of threadings
- how to split a threading set into subsets
- These determine the expected efficiency

A Simple Lower Bound

$$
\left.\begin{array}{l}
\left.\min _{\vec{t} \in T} f(\vec{t})=\min _{\vec{t} \in T} \sum_{i}\left[g_{1}\left(i, t_{i}\right)+\sum_{j>i} g_{2}\left(i, j, t_{i}, t_{j}\right)\right]\right\} \begin{array}{l}
\text { objective } \\
\text { function }
\end{array} \\
\quad \geq \sum_{i}\left[\min _{b_{i} \leq x \leq d_{i}} g_{1}(i, x)+\sum_{j>i} \min _{b_{i} \leq y \leq d_{i}}^{b_{j} \leq z \leq d_{j}}\right.
\end{array} g_{2}(i, j, y, z)\right]\left\{\begin{array}{l}
\text { lower }
\end{array}\right\} \begin{aligned}
& \text { bound }
\end{aligned}
$$

- Calculate minimum over each term separately
- Can choose different starting positions for the same segment (e.g. x and y for segment i)

A Better Lower Bound

$\min _{\vec{t} \in T} f(\vec{t}) \geq$
$\vec{t} \in T$
$\min _{\vec{i} \in T} \sum_{i}[g_{1}\left(i, t_{i}\right)+\underbrace{g_{2}\left(i-1, i, t_{i-1}, t_{i}\right)}_{\begin{array}{c}\text { interaction with } \\ \text { preceding segment }\end{array}}+\underbrace{\min _{\vec{u} \in T} \sum_{j>i+1}^{j<i-1} ⿺}_{\begin{array}{c}\text { best case interaction } \\ \text { with other segments }\end{array}} \frac{1}{j} g_{2}\left(i, j, t_{i}, u_{j}\right)]$

- Lower bound is closer approximation to actual score
- Constrain more of the starting indices to be shared instead of choosing them all independently
- Same t_{i} appears in multiple terms

Splitting a Threading Set

- A threading set is split by choosing
- a single core segment
- a split point s_{i} in the segment
- A simple method
- split the segment having the widest interval, i.e. $\max _{i}\left[d_{i}-b_{i}\right]$
- choose the split point s_{i} as the value that results in the lower bound for the set

Branch and Bound: Splitting a Set

Figure from R. Lathrop et al. Analysis and Algorithms for Protein Sequence-Structure Alignment.

$$
\begin{aligned}
& T=\left\{\vec{t} \mid b_{i} \leq t_{i} \leq d_{i}, b_{j} \leq t_{j} \leq d_{j}, b_{k} \leq t_{k} \leq d_{k}, b_{l} \leq t_{l} \leq d_{l}\right\} \\
& \text { (lat choose } \begin{array}{l}
\text { segment }
\end{array} 1 \quad T=\left\{\vec{t} \mid b_{i} \leq t_{i}<s_{i}, \cdots\right\} \\
& 2 T=\left\{\vec{t} \mid t_{i}=s_{i}, \cdots\right\}
\end{aligned}
$$

split into three sets
$3 T=\left\{\vec{t} \mid s_{i}<t_{i} \leq d_{i}, \cdots\right\}$

Threading Example

Suppose we have three segments ($\mathrm{i}, \mathrm{j}, \mathrm{k}$), each of which includes three amino acids. For a given sequence there are three possible starting positions for each segment. Suppose that you are given the following values for the scores of the individual segments and the scores for segment interactions.

$\mathrm{g} 1(\mathrm{i}, 2)=5$	$\mathrm{~g} 1(\mathrm{j}, 8)=9$	$\mathrm{~g} 1(\mathrm{k}, 13)=3$
$\mathrm{~g} 1(\mathrm{i}, 3)=2$	$\mathrm{~g} 1(\mathrm{j}, 9)=7$	$\mathrm{~g} 1(\mathrm{k}, 14)=4$
$\mathrm{~g} 1(\mathrm{i}, 4)=8$	$\mathrm{~g} 1(\mathrm{j}, 10)=6$	$\mathrm{~g} 1(\mathrm{k}, 15)=1$

g2(i, $, 2,8$) $=1$	$\mathrm{g} 2(\mathrm{j}, \mathrm{k}, 8,13)=7$	$\mathrm{g} 2(\mathrm{i}, \mathrm{k}, 2,13)=1$
g2(i, $\mathrm{j}^{2,9}$) $=2$	$\mathrm{g} 2(\mathrm{j}, \mathrm{k}, 8,14)=8$	$\mathrm{g} 2(\mathrm{i}, \mathrm{k}, 2,14)=2$
g2(i, $, 2,10$) $=2$	$\mathrm{g} 2(\mathrm{j}, \mathrm{k}, 8,15)=7$	$\mathrm{g} 2(\mathrm{i}, \mathrm{k}, 2,15)=5$
g2(i, $, 3,8)=5$	$\mathrm{g} 2(\mathrm{j}, \mathrm{k}, 9,13)=1$	$\mathrm{g} 2(\mathrm{i}, \mathrm{k}, 3,13)=5$
g2(i, $, 3,9)=6$	$\mathrm{g} 2(\mathrm{j}, \mathrm{k}, 9,14)=6$	$\mathrm{g} 2(\mathrm{i}, \mathrm{k}, 3,14)=6$
g2(i, $, 3,10$) $=4$	g2(j, $\mathrm{k}, 9,15$) $=8$	$\mathrm{g} 2(\mathrm{i}, \mathrm{k}, 3,15)=4$
g2(i, $, 4,4$) $=7$	$\mathrm{g} 2(\mathrm{j}, \mathrm{k}, 10,13)=11$	$\mathrm{g} 2(\mathrm{i}, \mathrm{k}, 4,13)=1$
g2(i, $, 4,4$) $=3$	$\mathrm{g} 2(\mathrm{j}, \mathrm{k}, 10,14)=12$	$\mathrm{g} 2(\mathrm{i}, \mathrm{k}, 4,14)=2$
$\mathrm{g} 2(\mathrm{i}, \mathrm{j}, 4,10)=4$	$\mathrm{g} 2(\mathrm{j}, \mathrm{k}, 10,15)=13$	g2(i,k,4,15) $=\mathbf{4}$

We'll find the optimal threading using the "simple lower bound" and splitting a set on the segment with the minimal g1 value. When splitting the selected segment, we'll divide it into three intervals of length one.

Threading Example

Branch and Bound Efficiency

- 58 proteins threaded against their "native" (i.e. correct) models

Protein number	PDB code	Protein length	Number of core segments	Search Space Size	Number of search iterations	Total (search-only) seconds	Equivalent threadings per iteration	Equivalent threadings per second
1	256b	106	5	$6.19 \mathrm{e}+3$	6	1 (1)	$1.03 \mathrm{e}+3$	$6.19 \mathrm{e}+3$
2	1 end	137	3	$4.79 \mathrm{e}+4$	6	1 (1)	$7.98 \mathrm{e}+3$	$4.79 \mathrm{e}+4$
3	1 rcb	129	4	$5.89 \mathrm{e}+4$	7	1 (1)	$8.41 \mathrm{e}+3$	$5.89 \mathrm{e}+4$
4	2 mhr	118	4	$9.14 \mathrm{e}+4$	7	1 (1)	$1.31 \mathrm{e}+4$	$9.14 \mathrm{e}+4$
5	351c	82	4	$1.12 \mathrm{e}+5$	5	1 (1)	$2.24 \mathrm{e}+4$	$1.12 \mathrm{e}+5$
6	1 bgc	174	4	$1.63 \mathrm{e}+5$	6	1 (1)	$2.72 \mathrm{e}+4$	$1.63 \mathrm{e}+5$
7	1 ubq	76	5	$1.70 \mathrm{e}+5$	6	1 (1)	$2.83 \mathrm{e}+4$	$1.70 \mathrm{e}+5$
8	1 mbd	153	8	$1.77 \mathrm{e}+5$	10	1 (1)	$1.77 \mathrm{e}+4$	$1.77 \mathrm{e}+5$
9	1lis	136	5	$5.02 \mathrm{e}+5$	7	1 (1)	$7.17 \mathrm{e}+4$	$5.02 \mathrm{e}+5$
10	1aep	161	5	$5.76 \mathrm{e}+5$	13	1 (1)	$4.43 \mathrm{e}+4$	$5.78 \mathrm{e}+5$
50	5 tm	316	14	$6.51 \mathrm{e}+18$	164	28 (7)	$3.97 \mathrm{e}+16$	$2.32 \mathrm{e}+17$
51	1 lec	242	15	$7.01 \mathrm{e}+18$	320	26 (12)	$2.19 \mathrm{e}+16$	$2.70 \mathrm{e}+17$
52	1 nar	290	17	$2.33 \mathrm{e}+19$	3984	208 (183)	$5.85 \mathrm{e}+15$	$1.12 \mathrm{e}+17$
53	1s01	275	15	$4.36 \mathrm{e}+19$	541	32 (13)	$8.05 \mathrm{e}+16$	$1.36 \mathrm{e}+18$
54	5 сра	307	16	$1.22 \mathrm{e}+20$	1089	72 (50)	$1.12 \mathrm{e}+17$	$1.69 \mathrm{e}+18$
55	9 api	384	17	$1.95 \mathrm{e}+22$	290	57 (25)	$6.71 \mathrm{e}+19$	$3.41 \mathrm{e}+20$
56	2 had	310	19	$2.57 \mathrm{e}+22$	4027	201 (179)	$6.39 \mathrm{e}+18$	$1.28 \mathrm{e}+20$
57	2 cpp	414	20	$6.37 \mathrm{e}+24$	3068	205 (164)	$2.08 \mathrm{e}+21$	$3.11 \mathrm{e}+22$
58	6 taa	478	23	$9.63 \mathrm{e}+31$	4917	1409 (1267)	$1.96 \mathrm{e}+28$	$6.83 \mathrm{e}+28$

