## Elements of Geometry for Computer Vision and Computer Graphics



Translation of Euclid's Elements by Adelardus Bathensis (1080-1152)

# 2021 Lecture 1

### Tomas Pajdla

pajdla@cvut.cz

Sunday 14th February, 2021

### 1 Linear algebra

We rely on linear algebra [1, 2, 3, 4, 5, 6]. We recommend excellent text books [4, 1] for acquiring basic as well as more advanced elements of the topic. Monograph [2] provides a number of examples and applications and provides a link to numerical and computational aspects of linear algebra. We will next review the most crucial topics needed in this text.

# 1.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of a vector in a linear space, which is induced by passing from one basis to another. We shall derive the relationship between the coordinates in a three-dimensional linear space over real numbers, which is the most important when modeling the geometry around us. The formulas for all other n-dimensional spaces are obtained by passing from 3 to n.

**§1 Coordinates** Let us consider an ordered basis  $\beta = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix}$  of a three-dimensional vector space  $V^3$  over scalars  $\mathbb{R}$ . A vector  $\vec{v} \in V^3$  is uniquely expressed as a linear combination of basic vectors of  $V^3$  by its *coordinates*  $x, y, z \in \mathbb{R}$ , i.e.  $\vec{v} = x \vec{b}_1 + y \vec{b}_2 + z \vec{b}_3$ , and can be represented as an ordered triple of coordinates, i.e. as  $\vec{v}_\beta = \begin{bmatrix} x & y & z \end{bmatrix}^\top$ .

We see that an ordered triple of scalars can be understood as a triple of coordinates of a vector in  $V^3$  w.r.t. a basis of  $V^3$ . However, at the same

### Basic concepts

• 3D Affine sporce 
$$\equiv \mathbb{R}^{3}$$
  
• 3D Projective space  $\equiv \mathbb{R}^{4}/\vec{x} \equiv d\vec{x}$ 

time, the set of ordered triples  $\begin{bmatrix} x & y & z \end{bmatrix}^{\top}$  is also a three-dimensional *coordinate linear space*  $\mathbb{R}^3$  over  $\mathbb{R}$  with  $\begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix}^{\top} + \begin{bmatrix} x_2 & y_2 & z_2 \end{bmatrix}^{\top} = \begin{bmatrix} x_1 + x_2 & y_1 + y_2 & z_1 + z_2 \end{bmatrix}^{\top}$  and  $s \begin{bmatrix} x & y & z \end{bmatrix}^{\top} = \begin{bmatrix} sx & sy & sz \end{bmatrix}^{\top}$  for  $s \in \mathbb{R}$ . Moreover, the ordered triple of the following three particular coordinate vectors

$$\sigma = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
(1.1)

forms an ordered basis of  $\mathbb{R}^3$ , the *standard basis*, and therefore a vector  $\vec{v} = \begin{bmatrix} x & y & z \end{bmatrix}^{\top}$  is represented by  $\vec{v}_{\sigma} = \begin{bmatrix} x & y & z \end{bmatrix}^{\top}$  w.r.t. the standard basis in  $\mathbb{R}^3$ . It is noticeable that the vector  $\vec{v}$  and the coordinate vector  $\vec{v}_{\sigma}$  of its coordinates w.r.t. the standard basis of  $\mathbb{R}^3$ , are identical.

§ **2** Two bases Having two ordered bases  $\beta = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix}$  and  $\beta' = \begin{bmatrix} \vec{b}_1' & \vec{b}_2' & \vec{b}_3' \end{bmatrix}$  leads to expressing one vector  $\vec{x}$  in two ways as  $\vec{x} = x \vec{b}_1 + y \vec{b}_2 + z \vec{b}_3$  and  $\vec{x} = x' \vec{b}_1' + y' \vec{b}_2' + z' \vec{b}_3'$ . The vectors of the basis  $\beta$  can also be expressed in the basis  $\beta'$  using their coordinates. Let us introduce

$$\vec{b}_{1} = a_{11}\vec{b}'_{1} + a_{21}\vec{b}'_{2} + a_{31}\vec{b}'_{3}$$

$$\vec{b}_{2} = a_{12}\vec{b}'_{1} + a_{22}\vec{b}'_{2} + a_{32}\vec{b}'_{3}$$

$$\vec{b}_{3} = a_{13}\vec{b}'_{1} + a_{23}\vec{b}'_{2} + a_{33}\vec{b}'_{3}$$
(1.2)

§**3 Change of coordinates** We will next use the above equations to relate the coordinates of  $\vec{x}$  w.r.t. the basis  $\beta$  to the coordinates of  $\vec{x}$  w.r.t. the

R<sup>3</sup> The standard basis for simplicity In 2D 7 Ý Ď = 0 X

Matrix **A** plays such an important role here that it deserves its own name. Matrix **A** is very often called the *change of basis matrix from basis*  $\beta$  *to*  $\beta'$  or the *transition matrix from basis*  $\beta$  *to basis*  $\beta'$  [2] 7] since it can be used to pass from coordinates w.r.t.  $\beta$  to coordinates w.r.t.  $\beta'$  by Equation 1.8]

However, literature [3] calls **A** the *change of basis matrix from basis*  $\beta'$  *to*  $\beta$ , i.e. it (seemingly illogically) swaps the bases. This choice is motivated by the fact that **A** relates vectors of  $\beta$  and vectors of  $\beta'$  by Equation [1.2] as

$$\begin{bmatrix} \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} \end{bmatrix} = \begin{bmatrix} a_{11} \vec{b}_{1}' + a_{21} \vec{b}_{2}' + a_{31} \vec{b}_{3}' & a_{12} \vec{b}_{1}' + a_{22} \vec{b}_{2}' + a_{32} \vec{b}_{3}' \\ a_{13} \vec{b}_{1}' + a_{23} \vec{b}_{2}' + a_{33} \vec{b}_{3}' \end{bmatrix} (1.11)$$

$$\begin{bmatrix} \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} \end{bmatrix} = \begin{bmatrix} \vec{b}_{1}' & \vec{b}_{2}' & \vec{b}_{3}' \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
(1.12)  
and therefore giving
$$\begin{bmatrix} 1 & 1 & 1 \\ \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} \end{bmatrix} = \begin{bmatrix} \vec{b}_{1}' & \vec{b}_{2}' & \vec{b}_{3}' \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} \end{bmatrix} = \begin{bmatrix} \vec{b}_{1}' & \vec{b}_{2}' & \vec{b}_{3}' \end{bmatrix} \mathbf{A}$$
(1.13)  
or equivalently

$$\begin{bmatrix} \vec{b}_1' & \vec{b}_2' & \vec{b}_3' \end{bmatrix} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \mathbf{A}^{-1} \quad (1.14) \quad \text{Let's operator}$$

 $\vec{b}_1 = a_{11} \vec{b}'_1 + a_{21} \vec{b}'_2 + a_{31} \vec{b}'_3$  $\vec{b}_2 = a_{12} \vec{b}'_1 + a_{22} \vec{b}'_2 + a_{32} \vec{b}'_3$  $\vec{b}_3 = a_{13} \vec{b}'_1 + a_{23} \vec{b}'_2 + a_{33} \vec{b}'_3$ 

where the multiplication of a row of column vectors by a matrix from the right in Equation 1.13 has the meaning given by Equation 1.11 above. Yet another variation of the naming appeared in [5] [6] where  $A^{-1}$  was named the *change of basis matrix from basis*  $\beta$  to  $\beta'$ .

We have to conclude that the meaning associated with the *change of basis matrix* varies in the literature and hence we will avoid this confusing name and talk about **A** as about the *matrix transforming coordinates of a vector from basis*  $\beta$  *to basis*  $\beta'$ .

There is the following interesting variation of Equation 1.13

$$\begin{bmatrix} \vec{b}'_1 \\ \vec{b}'_2 \\ \vec{b}'_3 \end{bmatrix} = \mathbf{A}^{-\top} \begin{bmatrix} \vec{b}_1 \\ \vec{b}_2 \\ \vec{b}_3 \end{bmatrix}$$



where the basic vectors of  $\beta$  and  $\beta'$  are understood as elements of column vectors. For instance, vector  $\vec{b}'_1$  is obtained as

$$\vec{b}_1' = a_{11}^{\star} \vec{b}_1 + a_{12}^{\star} \vec{b}_2 + a_{13}^{\star} \vec{b}_3 \tag{1.16}$$

where  $[a_{11}^{\star}, a_{12}^{\star}, a_{13}^{\star}]$  is the first row of  $\mathbf{A}^{-\top}$ .

§ **4 Example** We demonstrate the relationship between vectors and bases on a concrete example. Consider two bases  $\alpha$  and  $\beta$  represented by coordinate vectors, which we write into matrices

$$\alpha = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
(1.17)  
$$\beta = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix},$$
(1.18)

and a vector  $\vec{x}$  with coordinates w.r.t. the basis  $\alpha$ 

$$\vec{x}_{\alpha} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
(1.19)

6

We see that basic vectors of  $\alpha$  can be obtained as the following linear combinations of basic vectors of  $\beta$  $\begin{cases} \alpha = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$  $\beta = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix},$  $\vec{a_1} = +1 \vec{b_1} + 0 \vec{b_2} + 0 \vec{b_3}$ (1.20) $\vec{a}_2 = +1 \vec{b}_1 - 1 \vec{b}_2 + 1 \vec{b}_3$ (1.21) $\vec{a}_3 = -1 \vec{b}_1 + 0 \vec{b}_2 + 1 \vec{b}_3$ (1.22)or equivalently  $\vec{x}_{\alpha} = \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$  $\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{vmatrix} 1 & 1 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{pmatrix} \mathbf{A} \\ \mathbf{A} \\$ Coordinates of  $\vec{x}$  w.r.t.  $\beta$  are hence obtained as  $\vec{x}_{\beta} = \mathbf{A}\vec{x}_{\alpha}, \quad \longleftarrow \quad \mathbf{A} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ (1.24) $\begin{vmatrix} 1 \\ -1 \\ 2 \end{vmatrix} = \begin{vmatrix} 1 & 1 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{vmatrix} \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$ I'' = A I''' Vectors M = BA Bases (1.25)We see that  $\alpha = \beta \mathbf{A}$ (1.26) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ (1.27)

The following questions arises: When are the coordinates of a vector  $\vec{x}$  (Equation 1.8) and the basic vectors themselves (Equation 1.15) transformed in the same way? In other words, when  $\mathbf{A} = \mathbf{A}^{-\top}$ . We shall give the answer to this question later in paragraph 1.4.

7



### 4 Image coordinate system

Digital image Im is a matrix of pixels. We assume that Im is obtained by measuring intensity of light by sensors (pixels) arranged in a grid, Figure 4.1

We will work with images in two ways. First, we will work with intensity values, which are stored in the memory as a three-dimensional array of bytes indexed by the row index i, the column index j, and the color index k, Figure 4(a). Color index attains three values 1,2,3, with 1 corresponding to red, 2 corresponding to green and 3 corresponding to blue colors.

In Matlab, image Im is accessed using the row index i, the column index j and the color index k as >> Im(i, j, k). The most top left pixel has row as well as column index equal to 1. The red channel of the pixel with row index 2 and column index 3 is accessed as >> Im(2,3,1).

§1 Image coordinate system For geometrical computation, we introduce an *image coordinate system* as in Figure  $\underline{4}$ (b). The origin of the image coordinate system is chosen to assign coordinates 1, 1 to the center of the most top left pixel. Horizontal axis  $\vec{b}_1$  goes from left to right. The vertical axis  $\vec{b}_2$  goes from top down. The pixel that is accessed as >>Im(i,j,k) is in the image coordinate system represented by the vector  $\vec{u} = [j, i]^{\top}$ . A digital image with *H* rows and *W* columns will be in indexed in Matlab as >>Im(1:H, 1:W, 1:3) and >>size(Im) will return [H W 3]. The center of the most bottom right pixel will have coordinates [*W*, *H*]<sup> $\top$ </sup> in the image coordinate system.



The image coordinate system coincides with the Matlab coordinate system image, i.e. commands

>> axis image
>> plot(j,i,'.b')

plot a blue dot on the pixel accessed as >>Im(i,j,:);



Figure 4.1: Image is digitized by a rectangular array of pixels

The image coordinate system coincides with the Matlab coordinate system image, i.e. commands

```
>> axis image
>> plot(j,i,'.b')
```

plot a blue dot on the pixel accessed as >>Im(i,j,:);

The image coordinate system is non-standard in two dimensions since it is a left-handed system. The reason for such a unnatural choice is that this system will be next augmented into a three-dimensional right-handed coordinate system in such a way that the  $\vec{b}_3$  vector will be pointing towards the scene.  $\vec{b}_1$ 





3

(a) Image Im is a matrix of pixels. In Matlab, it is accessed using the row index i, the column index j and color index k as > Im(i,j,k). The most top left pixel has row as well as column index equal to 1. The red channel of the pixel with row index 2 and column index 3 is accessed as > Im(2,3,1). (b) The image coordinate system is defined with horizontal axis  $\vec{b}_1$ and vertical axis  $\vec{b}_2$ . The origin of the coordinate system is chosen to assign coordinates 1,1 to the most top left pixel. Notice that pixel, which is accessed as  $\gg$ Im(2,3,1), is represented in the image coordinate system by the vector  $\vec{u} = [3,2]^{\top}$ .

Figure 4.2: Image coordinate system.