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6 Camera calibration

Let us now look at a useful interpretation of image projection matrix in
space and image equipped with a cartesian coordinate systems.

6.1 Camera pose

The projection formula 5.10 reveals that the perspective projection de-

pends on matrix A and vector !Cδ. The vector !Cδ represents the position of
the camera projection center w.r.t. the world coordinate system. Columns
of matrix A are coordinates of the basic vectors of δ in the basis β

A “
”

!d1β
!d2β

!d3β

ı

(6.1)

To recover the orientation of the camera, we will introduce the focal
length f as the distance of the camera projection center C from its projection
plane π (in the world units) and replace the product f A by the product of
two 3 ˆ 3 matrices K and R

f A “ K R (6.2)

We will see that this seemingly artificial construction is indeed justified.
Rotation matrix R determines the orientation of the camera in space and

altogether with !Cδ defines the camera pose. The camera calibration matrix K
does not change when moving its camera in the space.

To obtain K and R, we define, Figure 6.1, the camera cartesian coordinate
system pC,γq with center (again) in the camera projection center C and with
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basis γ “ r!c1,!c2,!c3s such that

!c1 “ k11
!b1

!c2 “ k12
!b1 ` k22

!b2 (6.3)

!c3 “ k13
!b1 ` k23

!b2 ` 1!b3

Parameters kij are determined to make the basis γ orthogonal. Notice that
vector!c3 is orthogonal to π since it is orthogonal to!c1,!c2, which span π, by
construction. Also notice that γ is (in general) not an orthonormal basis
since the length of its vectors equals the distance of C from π, i.e. the focal
length f in the world units.

Equations 6.3 define matrix K as

K “
“

!c1β !c2β !c3β

‰

“

»

–

k11 k12 k13

0 k22 k23

0 0 1

fi

fl (6.4)

By this construction, we have

!xβ “ A !xδ “ K !xγ (6.5)

!xγ “ “
1

f
R !xδ (6.6)

The world cartesian coordinate system has basic vectors of unit length.
The camera cartesian coordinate system pC,γq has basic vectors of length
equal to f . Therefore,

”

!d1γ
!d2γ

!d3γ

ı

“
1

f
R “

»

—

—

–

rJ
1 { f

rJ
2 { f

rJ
3 { f

fi

ffi

ffi

fl

(6.7)

for some 3 ˆ 3 orthonormal matrix Rwith rows rJ
1 , rJ

2 , rJ
3 .
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Consider that

A “
”

!d1β
!d2β

!d3β

ı

“ K
”

!d1γ
!d2γ

!d3γ

ı

“
1

f
K R (6.8)

We can view the matrices 1
f R and K as coordinate transformation matri-

ces, which transform a general vector !y from the coordinates w.r.t. δ to γ
and then to β, i.e.

!yβ “ K !yγ “
1

f
K R !yδ (6.9)

The basis γ is orthogonal and all basic vectors have the same length,
which is equal to f . It follows from the orthogonality of the basis γ that
!c1 ¨ !c1 “ f 2, !c1 ¨ !c2 “ 0 and !c2 ¨ !c2 “ f 2 and hence using Equation 6.3 leads,
for a positive f , to

k11 }!b1} ´ f “ 0

k2
11 k22 p!b1 ¨!b2q ` k12 f 2 “ 0 (6.10)

k2
11 k2

22 }!b2}2 ´ pk2
12 ` k2

11q f 2 “ 0

Let us solve Equations 6.10 for k11, k12 and k22. The first equation in (6.10)
provides k11. Substituting the square of f from the first equation into the
second one and dividing it by k2

11 gives the second equation of (6.11), which
allows to compute k12 from k22. To get k22, we construct the third equation
of (6.11) as follows. We express k11 from the first equation of (6.10) and
k12 from the second equation of (6.11) and substitute them into the third

equation of (6.10), which we then multiply by ||!b1||4{ f 2. Altogether, we
get

k11 }!b1} ´ f “ 0

k12 }!b1}2 ` k22 p!b1 ¨!b2q “ 0 (6.11)

k2
22 p}!b1}2 }!b2}2 ´ p!b1 ¨!b2q2q ´ f 2 }!b1}2 “ 0
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Looking at the third equation of (6.11) we see that

k2
22 “

f 2}!b1}2

}!b1}2}!b2}2 ´ p!b1 ¨!b2q2
“

f 2

}!b2}2 ´ }!b2}2 cos2=p!b1,!b2q
(6.12)

and since γ was constructed to make k22 positive, we obtain

k22 “
f

}!b2} sin =p!b1,!b2q
(6.13)

The second equation of (6.10) now gives

k12 “ ´k22

!b1 ¨!b2

}!b1}2
“ ´k22

}!b2} cos =p!b1,!b2q

}!b1}
(6.14)

“ ´
f cos =p!b1,!b2q

}!b1} sin =p!b1,!b2q
(6.15)

Finally k11 follows from (6.11)

k11 “
f

}!b1}
(6.16)

Considering Figure 6.1 and Equation 6.3, we see that the coordinates of
the vector !u0, corresponding to the principal point, which is the perpendic-
ular projection of C onto π, are in β

!u0β “

»

–

k13

k23

0

fi

fl , i.e. !u0α “
„

k13

k23



(6.17)

The horizontal pixel size corresponds to }!b1}. Quantity k11 can thus
be understood as f expressed in the horizontal image units. The angle
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between the image axes!b1,!b2 is obtained from k12{k11 “ ´ cotan =p!b1,!b2q.

The ratio of the lengths of the image axes is determined by }!b2}{}!b1} “
b

k11 pk2
11

` k2
12

q{k22.

Let us now return to Equation 5.11 and substitute there the above results
to arrive at the final projection equation

η !xβ “ Pβ

„

!Xδ

1



(6.18)

η

„

!uα
1



“ A p!Xδ ´ !Cδq (6.19)

f η

„

!uα
1



“ f A p!Xδ ´ !Cδq (6.20)

f η

„

!uα
1



“ K R p!Xδ ´ !Cδq (6.21)

ζ

„

!uα
1



“ K R p!Xδ ´ !Cδq (6.22)

ζ

„

!uα
1



“ K R
”

I | ´ !Cδ
ı

„

!Xδ

1



(6.23)

We have introduced a new parameter ζ “ f η, which is the depth of X in
the world units. We conclude that

Pβ “
”

1
f K R | ´ 1

f K R
!Cδ

ı

(6.24)

Notice that the last row aJ
3 of A provides f since

A “

»

–

aJ
1
aJ

2
aJ

3

fi

fl “
1

f

»

–

k11 k12 k13

0 k22 k23

0 0 1

fi

fl

»

–

rJ
1
rJ

2
rJ

3

fi

fl “
1

f

»

–

k11r
J
1 ` k12r

J
2 ` k13r

J
3

k22r
J
2 ` k23r

J
3
rJ

3

fi

fl

(6.25)
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and hence }aJ
3 } “ 1

f . Therefore }Pβp3, 1 : 3q} “ 1
f .

Equation 6.23 is very important in many practical situations when we
do not have access to physical dimensions of the camera but only to

images. Then, it is possible to recover matrix K R
”

I | ´ !Cδ
ı

but not

image projection matrix Pβ. This is so important the we introduce the
camera projection matrix

P “
”

K R | ´ K R !Cδ
ı

(6.26)

which is related to the image projection matrix as

P “ f Pβ (6.27)

In this text, it would be more consistent to associate subscript ν with the
camera projection matrix but we will not do that since we want to use the
nomenclature of [13] here whenever possible.

Let us write K explicitly,

K “

»

—

—

–

f

}!b1}
´ f cos =p!b1,!b2q

}!b1} sin =p!b1,!b2q
u0

0
f

}!b2} sin =p!b1,!b2q
v0

0 0 1

fi

ffi

ffi

fl

(6.28)

where !u0α “
“

u0 v0
‰J

. We see that we can neither recover f nor }!b1}
from P.

Let us introduce image calibration matrix

Kβ “
1

f
K (6.29)

to have
Pβ “

”

Kβ R | ´ Kβ R !Cδ
ı

(6.30)
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Writing image calibration matrix Kβ explicitly,

Kβ “
1

f
K “

»

—

—

–

1

}!b1}
´ cos =p!b1,!b2q

}!b1} sin =p!b1,!b2q

u0
f

0 1

}!b2} sin =p!b1,!b2q

v0
f

0 0 1
f

fi

ffi

ffi

fl

(6.31)

shows that it is possible to recover both

}!b1} “
1

Kβ11
and f “

1

Kβ33
(6.32)

from image calibration matrix.
There is an important difference between Kβ and K regarding the rep-

resentation of internal camera calibration information. Image calibration
matrix Kβ, and also image projection matrix Pβ, captures all calibration
information about a perspective image whereas camera calibration ma-
trix K, and also camera projection matrix P, captures only the calibration
information that can be recovered by auto-calibration from images as we
will see later. When the focal length is known in world units or when
pixel sizes are known in world units, it is more appropriate to use im-
age calibration Kβ, or image projection matrix Pβ, to represent full internal
calibration information.

§1 Coordinate systems generated by applying K R to !yδ and R´1K´1

to !yβ We have seen that the decomposition of A to K and R introduced
the camera cartesian coordinate system pC,γq, Figure 6.2(b)

!yγ “
1

f
R !yδ (6.33)

!yβ “ K !yγ (6.34)
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O

C

!d1

!d2

!d3

o

π

!b1
!b2

!b1

!b3A

O

C

!d1

!d2

!d3

o

π

!b1
!b2

!b1
!b2

!b3

!c1

!c2

!c3
1
f R

K

(a) β “ r!b1,!b2,!b3s, δ “ r!d1, !d2, !d3s: !yβ “ A !yδ (b) γ “ r!c1,!c2,!c3s: !yγ “ 1
f R !yδ

!yβ “ K !yγ

O

C

!d1

!d2

!d3

o

π

!b1
!b2

!b1
!b2

!b3

!e1!e2

!e3

!n1

!n2

!n3

R

K

O

C

!d1

!d2

!d3

o

π

!b1!b2

!b1
!b2

!b3

!c1

!c2

!c3

!k1

!k2

!k3

R´1

K´1

(c) ε “ r!e1,!e2,!e3s: !yε “ R !yδ, (d) κ “ r!k1,!k2,!k3s: !yγ “ K´1 !yβ,
ν “ r!n1,!n2,!n3s: !yν “ K !yε !yκ “ R´1 !yγ
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There are three more coordinate systems to consider when looking at
how matrices R, K, and their inverses R´1, K´1, apply to vectors !yδ and !yβ,
Figure 6.2.

Let us first consider coordinates of a vector !y w.r.t. basis δ and apply
successively R and K. Coordinate vector R !yδ can be interpreted as coordi-
nates of !y w.r.t. a new basis ε “ r!e1,!e2,!e3s, Figure 6.2(c). Applying further
K to !yε gives the coordinate vector K !yε, which can be interpreted as !y w.r.t.
yet another new basis ν “ r!n1,!n2,!n3s. We get from ν to β by using 1

f I

!yε “ R !yδ (6.35)

!yν “ K !yε (6.36)

!yβ “
1

f
I !yν (6.37)

We have introduced two new coordinate systems pC, νq, ν “ r!n1,!n2,!n3s
and pC, εq, ε “ r!e1,!e2,!e3s.

Next we consider coordinates of a vector !y w.r.t. basis β and apply
successively K´1 and R´1. Coordinate vector K´1 !yβ gives !yγ. Coordinate
vector R´1 !yγ can be interpreted as coordinates of !y w.r.t. a new basis

κ “ r!k1,!k2,!k3s, Figure 6.2(d). To get from !yκ to !yδ we need to employ fI

!yγ “ K´1 !yβ (6.38)

!yκ “ R´1 !yγ (6.39)

!yδ “ fI !yκ (6.40)

We have thus introduced a new coordinate system pO,κq, κ “ r!k1,!k2,!k3s.
Figure 6.3 summarizes the relationship between coordinates of a vector

and between bases associated with a perspective camera.
We can now see why we have chosen to denote the image projection

matrix as Pβ and the camera projection matrix as P. The image projection
matrix provides the ray direction vector !x in basis β while the camera
projection matrix provides the ray direction vector !x in basis ν.
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!yα

!yβ

!yγ

!yδ

!yε

!yν

!yκ

fA

R

R

K

K

„

1 0 0
0 1 0



1
f R

1
f

1
f

1
f

α

β

γ

δ

ε

ν

κ

1
f A

´1

R´1

R´1

K´1

K´1

»

–

1 0
0 1
0 0

fi

fl

f R´1

f

f

f

(a) (b)

Figure 6.3: Relationships between (a) coordinates in different bases. e.g.
!yβ “ K !yγ and (b) bases themselves, e.g. β “ γ K´1, associated
with a perspective camera.

§2 Recovering camera pose from its projection matrix Let us next
consider that we have already computed the camera projection matrix

Q “ ξ P “ ξ K R rI | ´ !Cδs (6.41)

consisting of a 3 ˆ 3 matrix M and 3 ˆ 1 vector m

Q “ rM | ms (6.42)

To recover camera pose from Q, we need to get !Cδ from m and to decompose
Q into the product of K in the form of (6.4) and R such that RJR “ I and
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|R| “ 1. Consider M in the form

M “

»

–

mJ
1
mJ

2
mJ

3

fi

fl (6.43)

Next we notice that the last row of K R has unit norm since it is equal to the
last row of rotation R. Therefore, we need to divide M by the norm of its
last row to get a matrix decomposable into the product of K R. Moreover,
it follows from the construction of β that k11 ą 0 and k22 ą 0. Thus,
determinant |K R| “ |K| |R| “ k11 k22 ą 0. Therefore, we also need to
multiply M by the sign of its determinant to get a matrix decomposable
into K R.

sign |M|
}m3}

M “
sign |M|

}m3}

»

–

mJ
1
mJ

2
mJ

3

fi

fl “

»

–

k11 k12 k13

0 k22 k23

0 0 1

fi

fl

»

–

rJ
1
rJ

2
rJ

3

fi

fl (6.44)

which provides the following set of equations

mJ
2 m3

}m3}2
“ k22 r

J
2 r3 ` k23 r

J
3 r3 “ k23 (6.45)

mJ
1 m3

}m3}2
“ k13 (6.46)

mJ
2 m2

}m3}2
“ k2

22 ` k2
23 (6.47)

mJ
1 m2

}m3}2
“ k12 k22 ` k13 k23 (6.48)

mJ
1 m1

}m3}2
“ k2

11 ` k2
12 ` k2

13 (6.49)

from which k11, k12, k13, k22, k23 can be easily computed considering that the
most of consumer digital cameras have k11 ą 0, k22 ą 0, k13 ą 0, k23 ą 0.
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Having kij computed, we recover R from M as

R “ K´1 sign |M|
}m3}

M (6.50)

Camera projection center can be computed in two ways. Either we get

!Cδ “ ´ M´1m (6.51)

or we obtain it by finding a basis c of the one-dimensional right null space
of matrix Q, i.e. solving

Q c “ 0 (6.52)

and then computing
„

!Cδ
1



“
1

c4
c (6.53)

where c4 is the fourth coordinate of vector c.

6.2 Camera calibration and angle between
projection rays

We have introduced matrices P, R and K, and vector !Cδ which determine
the projection from space to images. However, since K is introduced with

K33 “ 1, the triplet (K, R, !Cδ) does not contain all information about the
camera, which can be obtained by direct measurement of its physical
components in a world coordinate system equipped with a known world
unit length 1W. The missing element is the scale of P, which is equivalent

to knowing the value of the focal length or the size of pixels, i.e. f , }!b1} or

}!b2}, in 1W.

Knowing K and f allows to recover }!b1} from Equations 6.3 as }!b1} “
f {k11. Knowing K and }!b1}, on the other hand, gives f “ }!b1} k11.

14



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

Therefore, full calibration of the camera is encoded in matrix Pβ, Equa-

tion 6.24, or, e.g., in one of the following tuples: (Kβ, R, !Cδ), (K, R, !Cδ, f ), (K,

R, !Cδ, }!b1}) or (K, R, !Cδ, }!b2}).
We defined the camera calibration matrix K with K33 “ 1 because we

often do not have access to the world unit when working with images
without knowing anything about the camera which was used to make
them. Moreover, a number of important tasks can be done without know-
ing the world unit.

§1 Angle between projection rays Consider two image points !u1α and
!u2α. The direction vectors of the rays are in β given by

!x1β “
„

!u1α

1



, !x2β “
„

!u2α

1



(6.54)

To obtain the angle between the direction vectors by evaluating the scalar
product of the vectors, we need to pass to an orthogonal basis. The
“closest” orthogonal basis is γ. Hence

cos =p!x1, !x2q “
!xJ

1γ
!x2γ

}!x1γ}}!x2γ}
“

!xJ
1β K

´JK´1!x2β

}K´1!x1β}}K´1!x2β}
(6.55)

Notice that we could use the orthogonal basis γ to measure angles instead
of, e.g., the closest orthonormal basis ε since the unknown scale factor f
cancels in the following formula

cos =p!x1, !x2q “
!xJ

1ε
!x2ε

}!x1ε}}!x2ε}
“

p f !xJ
1γqp f !x2γq

} f !x1ε}} f !x2γ}
“

!xJ
1γ
!x2γ

}!x1γ}}!x2γ}
(6.56)

We conclude that we do not need to know f to measure angles between
projection rays.
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