
T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

Elements of Geometry for
Computer Vision and Computer

Graphics

Translation of Euclid’s Elements by Adelardus Bathensis (1080–1152)

2021 Lecture 4

Tomas Pajdla
pajdla@cvut.cz

Sunday 14th February, 2021

1



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

π

"x1

"x2

"x3

η1
"x1

||"x1||

η2
"x2

||"x2||

η3
"x3

||"x3||

"d1

"d2

"d3

d12

d23

d31

"C

O

C

X1

X2

X3

"X2

Figure 6.4: A calibrated camera pose can be computed from projections of
three known points.

6.3 Calibrated camera pose computation

We have seen how to find (uncalibrated) perspective camera pose from
projections of known six points. In fact, we have recovered the calibration
of the camera. Next we shall show that when the calibration is known,
we are able to find the pose of the camera from projections of three points.
This is a very classical problem which has been known since [14].

Figure 6.4 shows a camera with center C, which projects three points X1,

X2 and X3, represented by vectors "X1δ, "X2δ and "X3δ in pO, δq, into image
points represented by "x1β, "x2β and "x3β.
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§1 Classical formulation of the calibrated camera pose computation
We introduce distances between pairs of points as

d12 “ ||"X2δ ´ "X1δ||, d23 “ ||"X3δ ´ "X2δ||, d31 “ ||"X1δ ´ "X3δ|| (6.57)

Since we see three different points, we know that all distances are positive.
Points X1, X2 and X3 are in pC,γq represented by vectors

ηi

"xiγ

||"xiγ||
“ ηi

K´1"xiβ

||K´1"xiβ||
, i “ 1, 2, 3 (6.58)

with ηi representing the distance from C to Xi. Distances ηi are positive
since otherwise we could not see the points.

§2 Computing distances to the camera center Calibrated perspec-
tive camera measures angles between projection rays

cij “ cos =p"xi, "xjq “
"xJ

iβ K
´JK´1"xjβ

}K´1"xiβ}}K´1"xjβ}
, i “ 1, 2, 3, j “ pi ´ 1qmod 3 ` 1

(6.59)
Hence we have all quantities ηi, cos =p"xi, "xjq and dij, which we need

to construct a set of equations using the rule of cosines d2
i j

“ η2
i

` η2
j

´
2 ηi η j cos =p"xi, "xjq, i.e.

d2
12 “ η2

1 ` η2
2 ´ 2 η1 η2 c12 (6.60)

d2
23 “ η2

2 ` η2
3 ´ 2 η2 η3 c23 (6.61)

d2
31 “ η2

3 ` η2
1 ´ 2 η3 η1 c31 (6.62)

with cij “ cos =p"xi, "xjq.
We have three quadratic equations in three variables. We shall solve

this system by manipulating the three equations to generate one equation
in one variable, solving it and then substituting back to get the remaining
two variables.
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§3 A classical solution Let us first get two equations in two variables.
Let us generate new equations by multiplying the left hand side of (6.60)
and (6.62) by the right hand side of (6.61) and right hand side of (6.60) and
(6.62) by the left hand side of (6.61)

d2
12 pη2

2 ` η2
3 ´ 2 η2 η3 c23q “ d2

23 pη2
1 ` η2

2 ´ 2 η1 η2 c12q (6.63)

d2
31 pη2

2 ` η2
3 ´ 2 η2 η3 c23q “ d2

23 pη2
3 ` η2

1 ´ 2 η3 η1 c31q (6.64)

We could have made three different choices which equation to use twice
but since all dij ‰ 0, and hence all sides of the equations are nonzero, all
the choices are equally valid.

We have now two equations with three variables but since the equations
are homogeneous, we will be able to reduce the number of variables to
two by dividing equations by (e.g.) η2

1 (which is non-zero) to get

d2
12

`

η2
12 ` η2

13 ´ 2 η12 η13 c23

˘

“ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

(6.65)

d2
31

`

η2
12 ` η2

13 ´ 2 η12 η13 c23

˘

“ d2
23

`

1 ` η2
13 ´ 2 η13 c31

˘

(6.66)

with η12 “ η2

η1
and η13 “ η3

η1
. Notice that we have a simpler situation than

before with only two quadratic equations in two variables. Let us proceed
further towards one equation in one variable.

We rearrange the terms to get a polynomials in η13 on the left and the
rest on the right

d2
12 η

2
13 ` p´2 d2

12 η12 c23q η13 “ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

´ d2
12η

2
12

pd2
31 ´ d2

23q η2
13 ` p2 d2

23 c31 ´ 2 d2
31 η12 c23q η13 “ d2

23 ´ d2
31 η

2
12 (6.67)

to get two quadratic equations

m1 η
2
13 ` p1 η13 “ q1 (6.68)

m2 η2
13 ` p2 η13 “ q2
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in η13 with

m1 “ d2
12 (6.69)

p1 “ ´2 d2
12 η12 c23 (6.70)

q1 “ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

´ d2
12η

2
12 (6.71)

m2 “ d2
31 ´ d2

23 (6.72)

p2 “ 2 d2
23 c31 ´ 2 d2

31 η12 c23 (6.73)

q2 “ d2
23 ´ d2

31 η
2
12 (6.74)

We have “hidden” the variable η12 in the new coefficients. We can now
look upon Equations 6.68 as on a linear system

„

m1 p1

m2 p2

 „

η2
13
η13



“
„

q1

q2



(6.75)

The matrix of the system (6.75) either is or is not singular.

§4 Case A If it is not singular, we can solve the system by Cramer’s
rule [3, 4, 2]

η2
13

ˇ

ˇ

ˇ

ˇ

„

m1 p1

m2 p2

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

„

q1 p1

q2 p2

ˇ

ˇ

ˇ

ˇ

(6.76)

η13

ˇ

ˇ

ˇ

ˇ

„

m1 p1

m2 p2

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

„

m1 q1

m2 q2

ˇ

ˇ

ˇ

ˇ

(6.77)

giving

η2
13 pm1 p2 ´ m2 p1q “ q1 p2 ´ q2 p1 (6.78)

η13 pm1 p2 ´ m2 p1q “ m1 q2 ´ m2 q1 (6.79)

Eliminating η13 (by squaring the second equation, multiplying the first one
by m1 p2 ´ m2 p1, which is non-zero, and comparing the left hand sides)
yields

pm1 p2 ´ m2 p1q pq1 p2 ´ q2 p1q “ pm1 q2 ´ m2 q1q2 (6.80)
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Substituting Formulas 6.69-6.74 into Equation 6.80 yields

0 “ a4 η
4
12 ` a3 η3

12 ` a2 η2
12 ` a1 η12 ` a0 (6.81)

with coefficients

a4 “ ´d8
23 ´ d4

12 d4
23 ´ d4

23 d4
31 ´ 2 d2

12 d4
23 d2

31 ` 2 d6
23 d2

31 ` 2 d2
12 d6

23 (6.82)

`4 d2
12 c2

23 d4
23 d2

31

a3 “ 4 d4
12 d4

23 c31 c23 ´ 4 d2
12 d6

23 c12 ´ 4 d2
12 c23 d6

23 c31 ` 4 d4
23 c12 d4

31 (6.83)

`4 d8
23 c12 ´ 4 d2

12 d4
23 c31 d2

31 c23 ´ 8 d2
12 c2

23 d4
23 d2

31 c12 ´ 8 d6
23 c12 d2

31

`4 d2
12 d4

23 c12 d2
31

a2 “ 8 d6
23 c2

12 d2
31 ` 4 d6

23 d2
31 ´ 2 d4

23 d4
31 ` 2 d4

12 d4
23 ´ 4 d4

12 d4
23 c2

31 (6.84)

´4 d8
23 c2

12 ´ 4 d4
12 c2

23 d4
23 ´ 2 d8

23 ` 8 d2
12 c23 d6

23 c31 c12

`4 d2
12 c2

23 d4
23 d2

31 ´ 4 d4
23 c2

12 d4
31 ` 4 d2

12 d6
23 c2

31 ` 8 d2
12 d4

23 c31 d2
31 c23 c12

a1 “ 4 d4
23 c12 d4

31 ` 4 d2
12 d6

23 c12 ` 4 d8
23 c12 ´ 4 d2

12 c23 d6
23 c31 (6.85)

´8 d2
12 d6

23 c2
31 c12 ´ 4 d2

12 d4
23 c31 d2

31 c23 ´ 4 d2
12 d4

23 c12 d2
31

`4 d4
12 d4

23 c31 c23 ´ 8 d6
23 c12 d2

31

a0 “ 2 d6
23 d2

31 ` 2 d2
12 d4

23 d2
31 ´ d4

23 d4
31 ´ d4

12 d4
23 ` 4 d2

12 d6
23 c2

31 (6.86)

´d8
23 ´ 2 d2

12 d6
23

We will use eigenvalue computation to find a numerical solution to
Equation 6.81. Construct the following companion matrix

C “

»

—

—

—

–

0 0 0 ´ a0
a4

1 0 0 ´ a1
a4

0 1 0 ´ a2
a4

0 0 1 ´ a3
a4

fi

ffi

ffi

ffi

fl

(6.87)

and observe that

| η12 I´ C | “ η4
12 `

a3

a4
η3

12 `
a2

a4
η2

12 `
a1

a4
η12 `

a0

a4
(6.88)

6



T Pajdla. Elements of Geometry for Computer Vision and Computer Graphics 2021-2-14 (pajdla@cvut.cz)

Therefore, a numerical approximation of η12 can be obtained by com-
puting, e.g., >>eig(C) in Matlab. Complex solutions are artifacts of the
method and should not be further considered. For every real solution, we
can then substitute back to Equation 6.79 to obtain the corresponding

η13 “
m1 q2 ´ m2 q1

m1 p2 ´ m2 p1
(6.89)

“
d2

12 pd2
23 ´ d2

31 η
2
12q ` pd2

23 ´ d2
31q pd2

23 p1 ` η2
12 ´ 2 η12 c12q ´ d2

12 η
2
12q

2 d2
12

pd2
23 c31 ´ d2

31
c23 η12q ` 2 pd2

31
´ d2

23q d2
12

c23 η12

To get η1, η2 and η3, we consider Equation 6.60, which can be rearranged
as

d2
12 “ η2

1 p1 ` η2
12 ´ 2 η12 c12q (6.90)

and hence yields positive

η1 “
d12

b

1 ` η2
12

´ 2 η12 c12

(6.91)

η2 “ η1 η12 (6.92)

η3 “ η1 η13 (6.93)

§5 Case B Let us now look at what happens when the matrix of the
system (6.75) is singular. Then, after substituting m1, m2, p1 and p2 from
Equations 6.69–6.74, we have

m1 p2 ´ m2 p1 “ 0 (6.94)

´2 d2
12 d2

23 pη12 c23 ´ c31q “ 0 (6.95)

η12 c23 “ c31 (6.96)

We used the fact that neither d12 ‰ 0 nor d23 ‰ 0.
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§6 Case B1 When c23 ‰ 0, then we get

η12 “
c31

c23
(6.97)

Substituting it to Equations 6.65 we get

d2
12

ˆ

p
c31

c23
q2 ` η2

13 ´ 2
c31

c23
η13 c23

˙

“ d2
23

ˆ

1 ` p
c31

c23
q2 ´ 2

c31

c23
c12

˙

(6.98)

d2
12

`

c2
31 ` c2

23 η
2
13 ´ 2 c31 c2

23 η13

˘

“ d2
23

`

c2
23 ` c2

31 ´ 2 c31 c23 c12

˘

(6.99)

and after some more manipulation obtain a quadratic equation

pd2
12 c2

23q η2
13`p´2 d2

12 c2
23 c31q η13`d2

12 c2
31´d2

23 c2
23´d2

23 c2
31`2 d2

23 c12 c23 c31 “ 0
(6.100)

in η13. We get η1, η2 and η3 from Equations 6.91, 6.92, 6.93.

§7 Case B2 When c23 “ 0, then it follows from Equation 6.96 that
c31 “ 0 as well. Returning back to equations 6.65, 6.66 provides

d2
12

`

η2
12 ` η2

13

˘

“ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

(6.101)

d2
31

`

η2
12 ` η2

13

˘

“ d2
23

`

1 ` η2
13

˘

(6.102)

Expressing η13 from Equation 6.102 gives

pd2
23 ´ d2

31q η2
13 “ d2

31 η
2
12 ´ d2

23 (6.103)

§8 Case B2.1 When d2
23 ‰ d2

31, then we can write

η2
13 “

d2
31 η

2
12 ´ d2

23

d2
23 ´ d2

31

(6.104)
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to substitute it into Equation 6.101

d2
12

˜

η2
12 `

d2
31 η

2
12 ´ d2

23

d2
23 ´ d2

31

¸

“ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

(6.105)

which we further manipulate to get a quadratic equation in η12
`

d2
12 ´ d2

23 ` d2
31

˘

η2
12 ` 2 c12 pd2

23 ´ d2
31q η12 ` d2

31 ´ d2
12 ´ d2

23 “ 0 (6.106)

We get η1, η2 and η3 from Equations 6.91, 6.92, 6.93.

§9 Case B2.2 Finally, when d2
23 “ d2

31, then we get from Equation 6.103

η12 “ 1 (6.107)

and from Equation 6.101

η2
13 “

d2
23

d2
12

p2 ´ 2 c12q ´ 1 (6.108)

and hence the positive

η13 “

g

f

f

e

d2
23

d2
12

p2 ´ 2 c12q ´ 1 (6.109)

We get η1, η2 and η3 from Equations 6.91, 6.92, 6.93.

§10 Selecting solutions The above process of ηi computation often
delivers several solutions. It is important to notice that some of them
may not satisfy the original Equations 6.62–6.60. For instance, we always
obtain solutions for the case A as well as for some of the cases B but
only one of the cases is actually valid. Hence, we need to select only the
solutions that satisfy Equations 6.62–6.60 and are meaningful, i.e. are real
and positive.
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§11 A modern (more elegant) solution The classical solution is per-
fectly valid but it was quite tedious to derive it. Let us now present
another, somewhat more elegant, solution, which exploits some of more
recent results of algebraic geometry [15, 16].

Let us consider Equations 6.60, 6.61, 6.62 and proceed to Equations 6.65, 6.66,
but, this time, using all three pairs to get three equations in η12, η13

f1 “ d2
12

`

η2
12 ` η2

13 ´ 2 η12 η13 c23

˘

´ d2
23

`

1 ` η2
12 ´ 2 η12 c12

˘

“ 0(6.110)

f2 “ d2
31

`

η2
12 ` η2

13 ´ 2 η12 η13 c23

˘

´ d2
23

`

1 ` η2
13 ´ 2 η13 c31

˘

“ 0(6.111)

f3 “ d2
12

`

1 ` η2
13 ´ 2 η13 c31

˘

´ d2
31

`

1 ` η2
12 ´ 2 η12 c12

˘

“ 0 (6.112)

It is known [15, 16] that solutions to a set of k algebraic equations

fipx1, . . . , xnq “ 0, i “ 1 . . . , k (6.113)

in n variables, which have a fininte number of solutions, can always be
obtained by deriving a polynomial gpxnq “ 0 in the last variable by the
following procedure. If the system, does not have any solution, the pro-
cedure will generate polynomial gn “ 1, i.e. a non-zero constant, leading
to the contradiction 1 “ 0.

The procedure is as follows. First generate new equations by multiply-
ing all fi by all possible monomials up to degree m

x1, . . . , xn, x2
1, x1 x2, . . . , x2

n, x
3
1, x

2
1 x2, . . . , xm

n (6.114)

to get equations

f1 “ 0, . . . , fn “ 0, x1 f1 “ 0, . . . , xn fn “ 0, x2
1 f1 “ 0, x1 x2 f1 “ 0, . . . , xm

n fn “ 0
(6.115)

The degree m needs to be chosen such that the next step yields the desired
result. It is always possible to choose such m but it may sometimes be
found only by using more and more monomials until the Gaussian elim-
ination of the matrix of coefficients, which combine monomials, does not

10
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produce a row corresponding to an equation in xn only. Let us demonstrate
this process by solving our problem.

We use the following four monomials of maximal degree two

η12, η13, η12 η13, η
2
12 (6.116)

Notice that we did not include the second degree monomial η2
13 since it

turns out that equations generated by that monomial are not necessary.
We obtain 15 “ 3 ` 4 ˆ 3 equations

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

f1
f2
f3

η12 f1
η12 f2
η12 f3
η13 f1
η13 f2
η13 f3

η12 η13 f1
η12 η13 f2
η12 η13 f3
η2

12 f1
η2

12 f2
η2

12 f3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ M

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

η12 η3
13

η3
13

η2
12 η

2
13

η2
13 η12

η2
13

η3
12 η13

η13 η2
12

η13 η12

η13

η4
12
η3

12
η2

12
η12

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ M m “ 0 (6.117)

with

M “

»

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2
0 0 0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2
0 0 0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6
0 0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2 0
0 0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2 0
0 0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6 0
0 m1 0 ´m7 0 0 m4 m8 ´m2 0 0 0 0 0
0 m5 0 m9 ´m10 0 ´m3 0 m2 0 0 0 0 0
0 ´m1 0 0 m11 0 m3 ´m12 m6 0 0 0 0 0

m1 0 ´m7 0 0 m4 m8 ´m2 0 0 0 0 0 0
m5 0 m9 ´m10 0 ´m3 0 m2 0 0 0 0 0 0

´m1 0 0 m11 0 m3 ´m12 m6 0 0 0 0 0 0
0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2 0 0
0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2 0 0
0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.118)
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and

m1 “ d2
12 m4 “ d2

12 ´ d2
23 m7 “ 2 d2

12 c23 m10 “ 2 d2
23 c31

m2 “ d2
23 m5 “ d2

23 ´ d2
31 m8 “ 2 d2

23 c12 m11 “ 2 d2
12 c31

m3 “ d2
31 m6 “ d2

31 ´ d2
12 m9 “ 2 d2

31 c23 m12 “ 2 d2
31 c12

(6.119)
Matrix M contains coefficients and vector m contains the monomials.

Notice in Equation 6.117 that the last five monomials contain only on
η12. We have deliberately ordered monomials to achieve this. Next, we
do Gaussian elimination (with pivoting) of matrix M and get a new matrix
M1.

One can verify that that the 10th row of M1 has the first nine elements
equal to zero. Therefore

M1
10,: m “ 0 (6.120)

is a polynomial only in η12. In fact, it is exactly a non-zero multiple of
polynomials obtained in cases A, B1, B2.1 and B2.2 above.

Discussion of the cases happens in the Gaussian elimination with piv-
oting, which avoids dividing by elements close to zero. The resulting
polynomial may be of degree four (case A) but will have lower degrees in
other cases.

§12 Computing camera orientation and camera center Having quan-

tities η1, η2, η3, we shall compute camera projection center "Cδ and camera
rotation R from Equation 6.24.

The three points X1, X2 and X3 are represented in the world coordinate

system pO, δq by vectors "X1δ, "X2δ and "X3δ. With known η1, η2, η3, we can
represent them also in the camera (orthonormal) coordinate system pC, εq
by vectors

"Yiε “ ηi "yiε “ ηi
"xiε

||"xiε||
“ ηi

f "xiγ

|| f "xiγ||
“ ηi

"xiγ

||"xiγ||
, i “ 1, 2, 3 (6.121)
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Coordinate vectors "Xiδ are related to coordinate vectors "Yiε as follows

"Y1ε “ R p"X1δ ´ "Cδq (6.122)

"Y2ε “ R p"X2δ ´ "Cδq (6.123)

"Y3ε “ R p"X3δ ´ "Cδq (6.124)

There are three vector equations inR3, which is nine scalar equations, and

12 unknowns in R and "Cδ. Additional seven equations are provided by
the fact that R is an orthonormal matrix, i.e. RJR “ I and |R| “ 1.

To compute R, we shall next eliminate "Cδ from Equations 6.122–6.124

"Y2ε ´ "Y1ε “ R p"X2δ ´ "X1δq (6.125)

"Y3ε ´ "Y1ε “ R p"X3δ ´ "X1δq (6.126)

and use the property (Equation 1.50 in Section 1.3)

"Xε ˆ "Yε “
R´J

|R´J|
p"Xδ ˆ "Yδq “ R p"Xδ ˆ "Yδq (6.127)

of the vector product of any two vectors "X, "Y in R3 and an orthonormal
matrix R to write

p"Y2ε ´ "Y1εq ˆ p"Y3ε ´ "Y1εq “
´

R p"X2δ ´ "X1δq
¯

ˆ
´

R p"X3δ ´ "X1δq
¯

(6.128)

“ R
´

p"X2δ ´ "X1δq ˆ p"X3δ ´ "X1δq
¯

(6.129)

which provides a triplet of independent vectors expressed in the two bases

"Z2ε “ "Y2ε ´ "Y1ε, "Z2δ “ "X2δ ´ "X1δ (6.130)

"Z3ε “ "Y3ε ´ "Y1ε, "Z3δ “ "X3δ ´ "X1δ (6.131)
"Z1ε “ "Z2ε ˆ "Z3ε, "Z1δ “ "Z2δ ˆ "Z3δ (6.132)
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Rotation R can then be recovered from
”

"Z1ε "Z2ε "Z3ε

ı

“ R
”

"Z1δ "Z2δ "Z3δ

ı

(6.133)

as

R “
”

"Z1ε "Z2ε "Z3ε

ı ”

"Z1δ "Z2δ "Z3δ

ı´1
(6.134)

With known R we get "Cδ as

"Cδ “ "Xiδ ´ RJ"Yiε, i “ 1, 2, 3 (6.135)
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§1 Vector product Assume two linearly independent coordinate vec-
tors
!x “

“

x1 x2 x3
‰J

and !y “
“

y1 y2 y3
‰J

inR3. The following system of
linear equations

„

x1 x2 x3

y1 y2 y3



!z “ 0 (1.41)

has a one-dimensional subspace V of solutions in R3. The solutions can
be written as multiples of one non-zero vector !w, the basis of V, i.e.

!z “ λ !w, λ P R (1.42)

Let us see how we can construct !w in a convenient way from vectors !x, !y.
Consider determinants of two matrices constructed from the matrix of

the system (1.41) by adjoining its first, resp. second, row to the matrix of
the system (1.41)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

x1 x2 x3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

y1 y2 y3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 (1.43)

which gives

x1 px2 y3 ´ x3 y2q ` x2 px3 y1 ´ x1 y3q ` x3 px1 y2 ´ x2 y1q “ 0(1.44)

y1 px2 y3 ´ x3 y2q ` y2 px3 y1 ´ x1 y3q ` y3 px1 y2 ´ x2 y1q “ 0(1.45)

and can be rewritten as

„

x1 x2 x3

y1 y2 y3



»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “ 0 (1.46)

We see that vector

!w “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl (1.47)
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solves Equation 1.41.
Notice that elements of !w are the three two by two minors of the matrix

of the system (1.41). The rank of the matrix is two, which means that at
least one of the minors is non-zero, and hence !w is also non-zero. We see
that !w is a basic vector of V. Formula 1.47 is known as the vector product
in R3 and !w is also often denoted by !x ˆ !y.

§2 Vector product under the change of basis Let us next study the
behavior of the vector product under the change of basis in R3. Let
us have two bases β, β 1 in R3 and two vectors !x, !y with coordinates

!xβ “
“

x1 x2 x3
‰J

, !yβ “
“

y1 y2 y3
‰J

and !xβ 1 “
“

x 1
1 x 1

2 x 1
3

‰J
, !yβ “

“

y 1
1 y 1

2 y 1
3

‰J
. We introduce

!xβ ˆ !yβ “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl !xβ 1 ˆ !yβ 1 “

»

–

x 1
2y 1

3 ´ x 1
3y 1

2
´x 1

1y 1
3 ` x 1

3y 1
1

x 1
1y 1

2 ´ x 1
2y 1

1

fi

fl (1.48)

To find the relationship between!xβˆ!yβ and!xβ 1 ˆ!yβ 1 , we will use the follow-

ing fact. For every three vectors !x “
“

x1 x2 x3
‰J

, !y “
“

y1 y2 y3
‰J

,

!z “
“

z1 z2 z3
‰J

in R3 there holds

!zJp!x ˆ !yq “
“

z1 z2 z3
‰

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3

y1 y2 y3

z1 z2 z3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

!xJ

!yJ

!zJ

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(1.49)
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We can write

!xβ 1 ˆ !yβ 1 “

»

–

r1 0 0s p!xβ 1 ˆ !yβ 1q
r0 1 0s p!xβ 1 ˆ !yβ 1q
r0 0 1s p!xβ 1 ˆ !yβ 1q

fi

fl “

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

!xJ
β 1

!yJ
β 1

1 0 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

!xJ
β 1

!yJ
β 1

0 1 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

!xJ
β 1

!yJ
β 1

0 0 1

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

!xJ
β A

J

!yJ
β A

J

1 0 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

!xJ
β A

J

!yJ
β A

J

0 1 0

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

!xJ
β A

J

!yJ
β A

J

0 0 1

fi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

—

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

!xJ
β

!yJ
β

r1 0 0s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

!xJ
β

!yJ
β

r0 1 0s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

–

!xJ
β

!yJ
β

r0 0 1s A´J

fi

ffi

fl
AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

ffi

fl

J

“

»

–

r1 0 0s A´Jp!xβ ˆ !yβq
r0 1 0s A´Jp!xβ ˆ !yβq
r0 0 1s A´Jp!xβ ˆ !yβq

fi

fl

ˇ

ˇAJ
ˇ

ˇ

“
A´J

|A´J|
p!xβ ˆ !yβq (1.50)

§3 Vector product as a linear mapping It is interesting to see that for
all !x, !y P R3 there holds

!x ˆ !y “

»

–

x2 y3 ´ x3 y2

´x1 y3 ` x3 y1

x1 y2 ´ x2 y1

fi

fl “

»

–

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

fi

fl

»

–

y1

y2

y3

fi

fl (1.51)

and thus we can introduce matrix

r!xsˆ “

»

–

0 ´x3 x2

x3 0 ´x1

´x2 x1 0

fi

fl (1.52)

and write
!x ˆ !y “ r!xsˆ !y (1.53)
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