Elements of Geometry for Computer Vision and Computer Graphics

Translation of Euclid's Elements by Adelardus Bathensis (1080-1152)

Lecture 7: The Projective Plane

Comparing Geometrical and Algebraic Models

Point position	Projection	
	Geometrical model in aff. space	Algebraic model in aff. space
<i>X</i> ∉ σ	one point of π	$\eta \neq 0, \vec{x}_{\beta} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}, (\vec{x}_{\beta} \neq \vec{0})$
$C \neq X \in \sigma$		$\eta \neq 0, \vec{x}_{\beta} = \begin{bmatrix} u \\ v \\ 0 \end{bmatrix}, \vec{x}_{\beta} \neq \vec{0}$
X = C	all points of π	$\eta \neq 0$, $\vec{x}_{\beta} = \vec{0}$

Comparing Geometrical and Algebraic Models

Point position	Projection	
	Geometrical model in aff. space	Algebraic model in aff. space
<i>X</i> ∉ σ	one point of π	$\eta \neq 0, \vec{x}_{\beta} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}, (\vec{x}_{\beta} \neq \vec{0})$
$C \neq X \in \sigma$	no point	$\eta \neq 0, \vec{x}_{\beta} = \begin{bmatrix} u \\ v \\ 0 \end{bmatrix}, \vec{x}_{\beta} \neq \vec{0}$
X = C	all points of π	$\eta \neq 0, \vec{x}_{\beta} = \vec{0}$

- 1. We can always assume $\eta \neq 0$.
- 2. The "projection" of *C* is represented by the zero vector while the projections of all other points are represented by non-zero vectors.
- 3. The algebraic projection model can represent projections of all points in the affine space.
- 4. The geometrical projection model is less capable than the algebraic projection model since it can't model the projection of points in σ different from C.

Comparing Geometrical and Algebraic Models

Point position	Projection	
	Geometrical model in aff. space	Algebraic model in aff. space
<i>X</i> ∉ σ	one point of π	$\eta \neq 0, \vec{x}_{\beta} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}, (\vec{x}_{\beta} \neq \vec{0})$
$C \neq X \in \sigma$		$\eta \neq 0, \vec{x}_{\beta} = \begin{bmatrix} u \\ v \\ 0 \end{bmatrix}, \vec{x}_{\beta} \neq \vec{0}$
X = C	all points of π	$\eta \neq 0$, $\vec{x}_{\beta} = \vec{0}$

- 1. We can always assume $\eta \neq 0$.
- 2. The "projection" of *C* is represented by the zero vector while the projections of all other points are represented by non-zero vectors.
- 3. The algebraic projection model can represent projections of all points in the affine space.
- 4. The geometrical projection model is less capable than the algebraic projection model since it can't model the projection of points in σ different from C.

cw.fel.cvut.cz/b212/courses/gvg/start \rightarrow BRUTE \rightarrow GVG Geometry of Computer Vision and Graphics

Q: Which points project to point(s) in the image plane using the geometric model of perspective projections in affine space?

- 1. A point X in the plane σ parallel to the image plane π .
- 2. The camera center C.
- 3. A point X in the plane π .

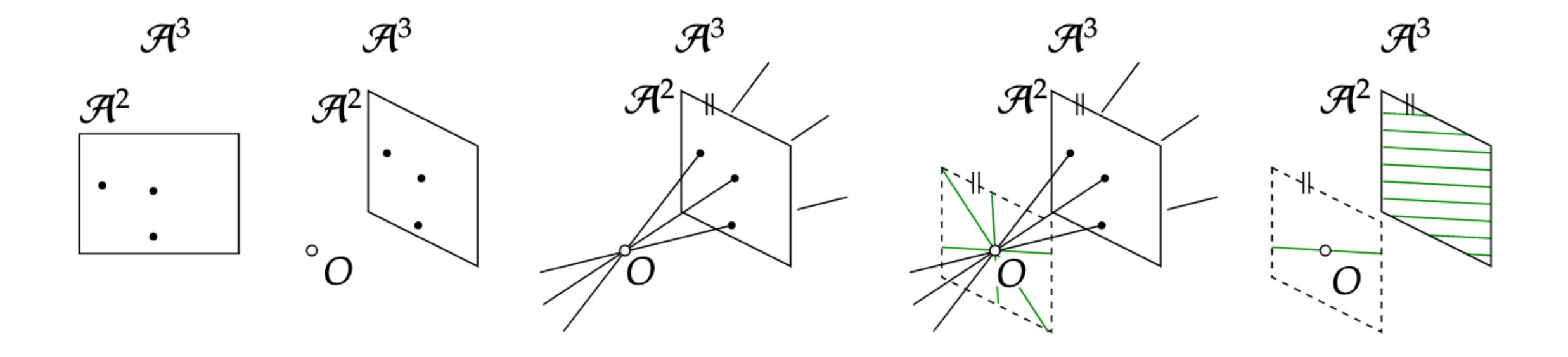
cw.fel.cvut.cz/b212/courses/gvg/start \rightarrow BRUTE \rightarrow GVG Geometry of Computer Vision and Graphics

Q: Which points project to point(s) in the image plane using the geometric model of perspective projections in affine space?

- 1. A point X in the plane σ parallel to the image plane π .
- 2. The camera center C.

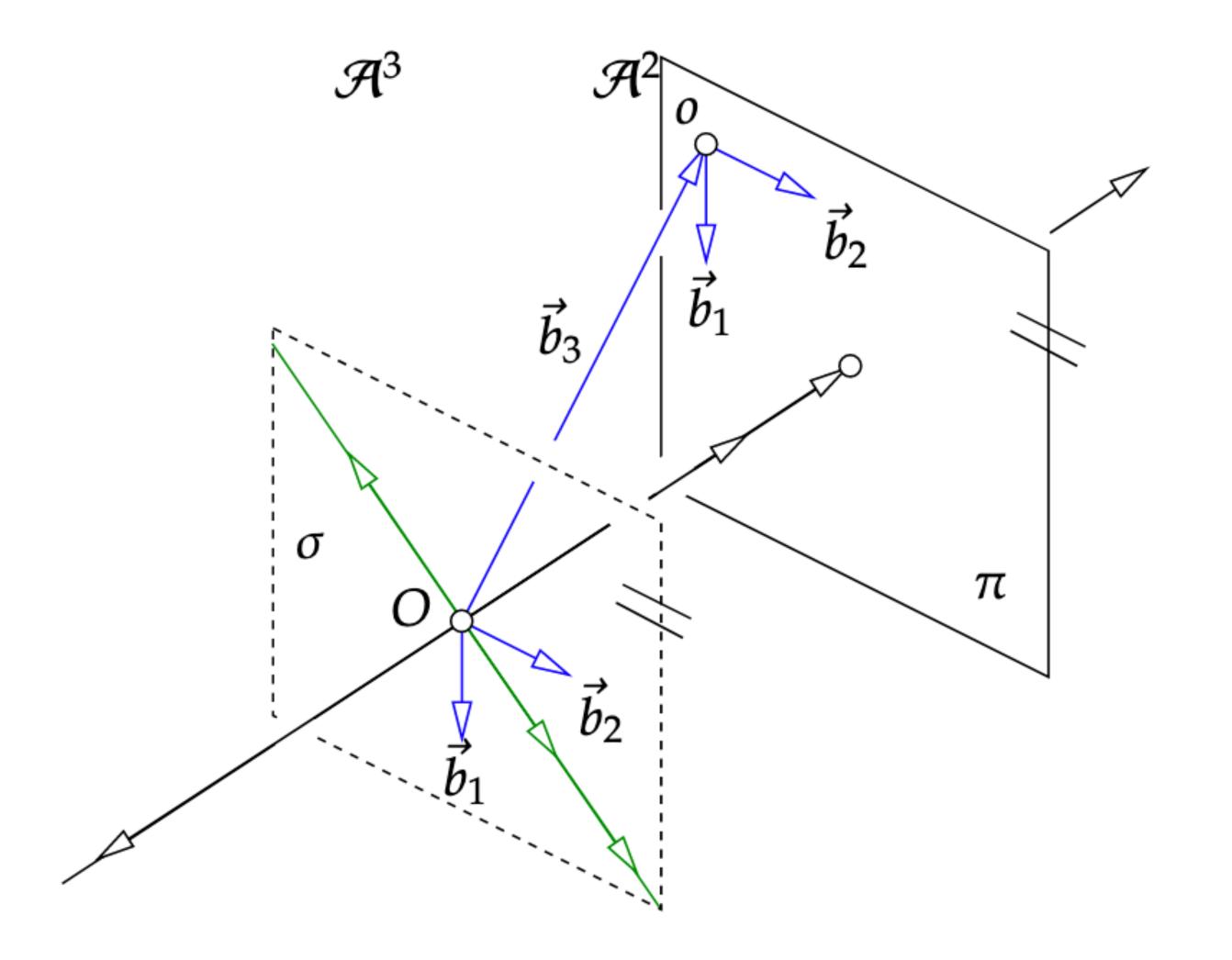
3. A point X in the plane π .

The Real Projective Plane - Geometrical Model

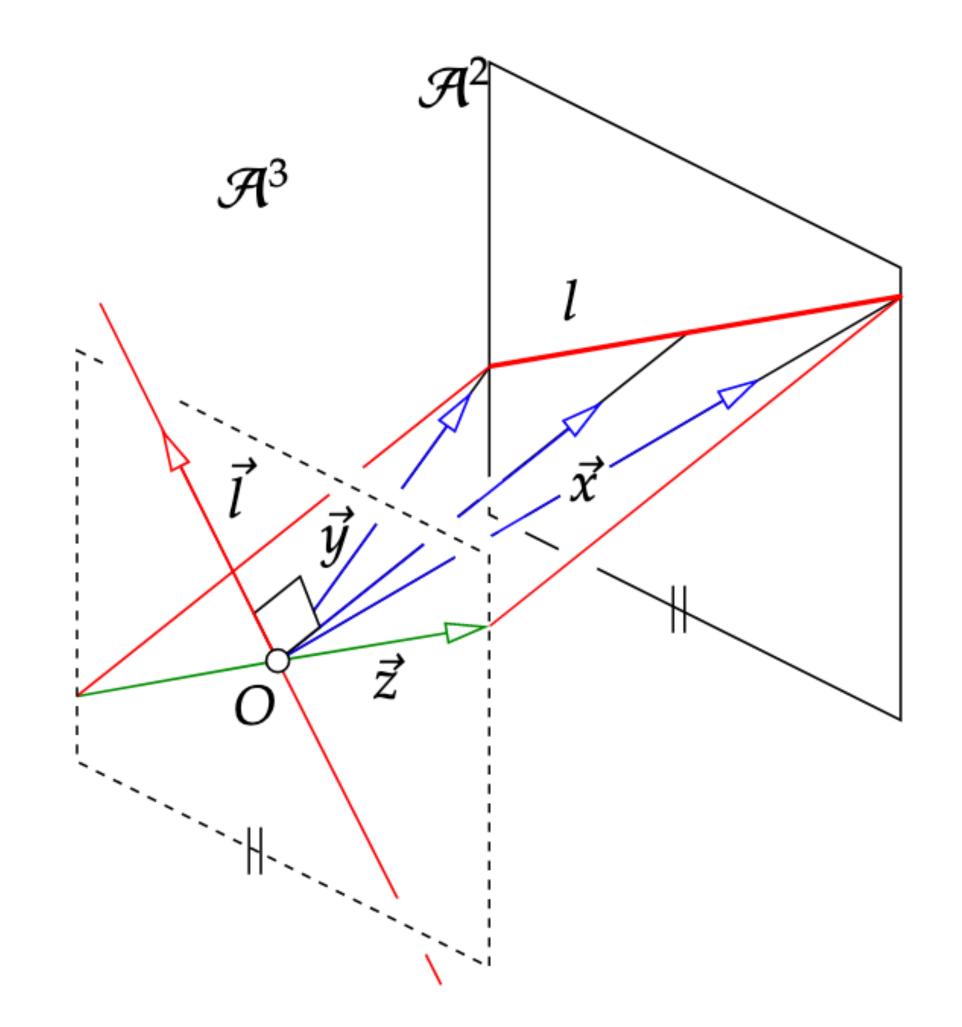


Torsten Sattler

The Real Projective Plane - Algebraic Model

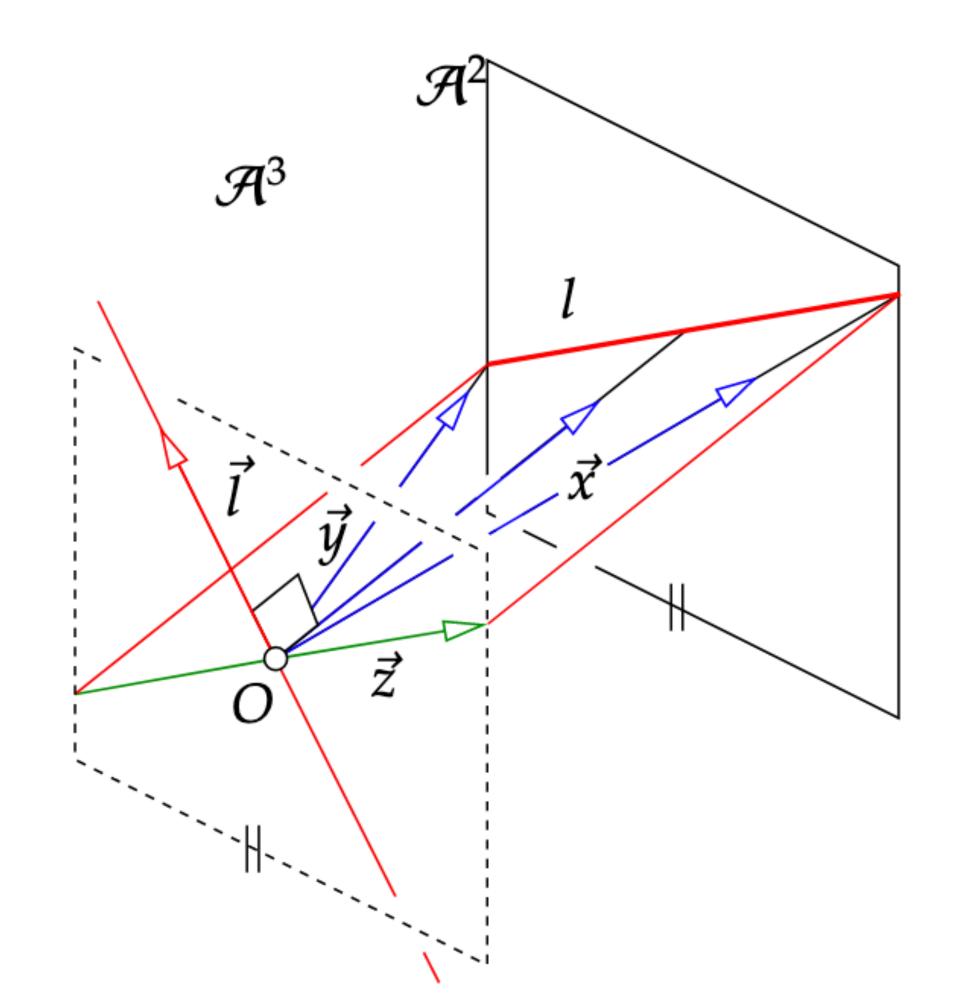


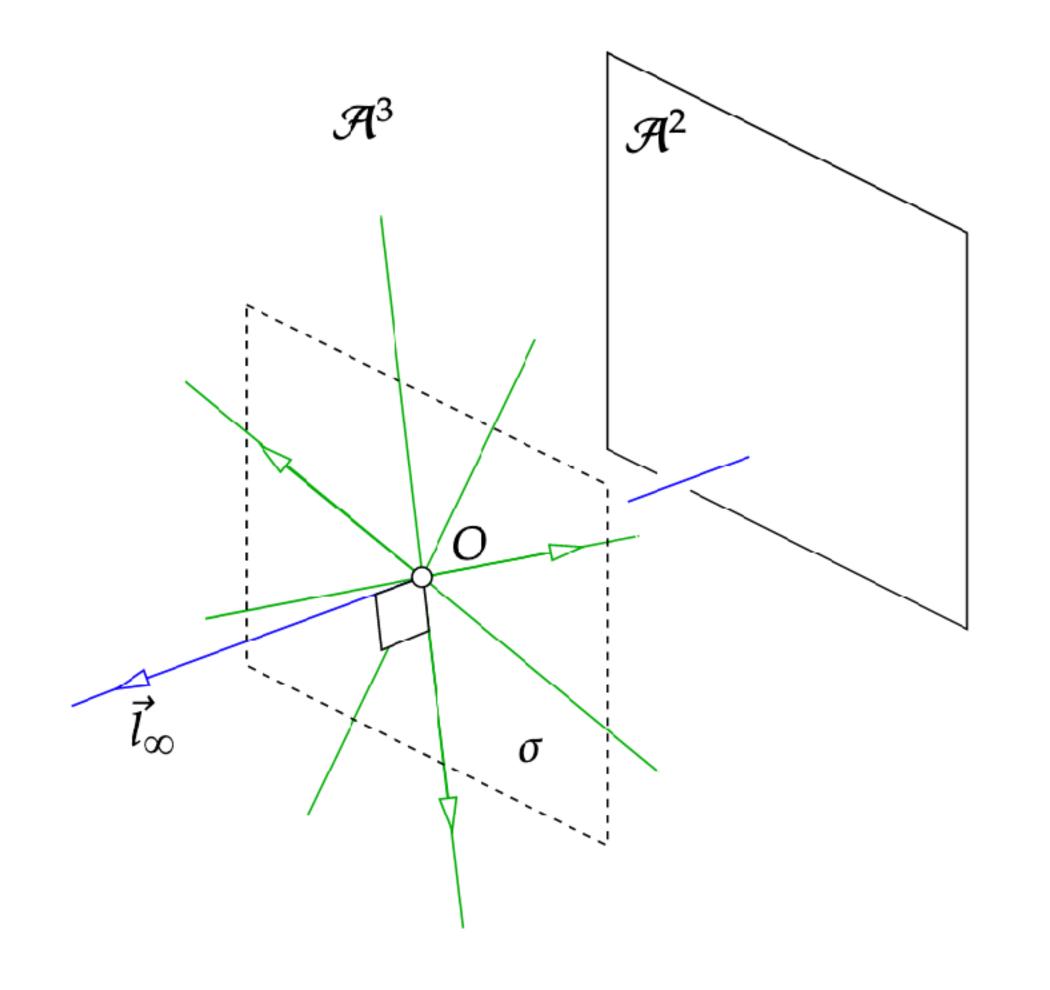
Lines of the Real Projective Plane



Torsten Sattler

Lines of the Real Projective Plane





ideal line

Torsten Sattler

cw.fel.cvut.cz/b212/courses/gvg/start \rightarrow BRUTE \rightarrow GVG Geometry of Computer Vision and Graphics

Q: Mark ideal points (points at infinity).

- $1.[0\ 0\ 0]^{\mathsf{T}}$
- $2. [1 \ 0 \ 0]^T$
- 3. [0 1 0]^T
- $4.[0\ 0\ 1]^{T}$

cw.fel.cvut.cz/b212/courses/gvg/start \rightarrow BRUTE \rightarrow GVG Geometry of Computer Vision and Graphics

Q: Mark ideal points (points at infinity).

- 1. $[0\ 0\ 0]^{T}$
- 2. [1 0 0]^T

3. [0 1 0]^T

4. $[0\ 0\ 1]^T$

cw.fel.cvut.cz/b212/courses/gvg/start \rightarrow BRUTE \rightarrow GVG Geometry of Computer Vision and Graphics

Q: Mark homogenous coordinates representing the point [0 1]^T in the affine plane.

- 1. [1 0 1]^T
- 2. [0 101 1]^T
- $3. [0 101 101]^T$
- 4. [0 1 0.5]^T

cw.fel.cvut.cz/b212/courses/gvg/start \rightarrow BRUTE \rightarrow GVG Geometry of Computer Vision and Graphics

Q: Mark homogenous coordinates representing the point [0 1]^T in the affine plane.

- 1. [1 0 1]^T
- 2. [0 101 1]^T
- 3. [0 101 101]^T
- $4. [0 \ 1 \ 0.5]^T$

