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3.4.2 Point computation

Let us assume having camera projection matrices P1, P2 and image points
!x1β1 , !x2β2 such that

ζ1 !x1β1 “ P1

„

!Xδ
1



and ζ2 !x2β2 “ P2

„

!Xδ
1



(3.68)

We can get !Xδ, and ζ1, ζ2 by solving the following system of (inhomoge-
neous) linear equations

«

!x1β1
!0 ´P1

!0 !x2β2 ´P2

ff

»

—

—

–

ζ1

ζ2

!Xδ
1

fi

ffi

ffi

fl

“ 0 (3.69)

3.5 Calibrated relative camera pose computation

In the previous chapter, we had first computed a multiple of the fun-
damental matrix from seven point correspondences and only then used
camera calibration matrices to recover a multiple of the essential matrix.
Here we will use the camera calibration right from the beginning to obtain
a multiple of the essential matrix directly from only five image correspon-
dences. Not only that five is smaller than seven but using the calibration
right from the beginning permits all points of the scene generating the
correspondences to lie in a plane.

We start from Equation 3.42 to get !x1γ1 and !x2γ2 from Equation 3.43
which are related by

!xJ
2β2
K´J

2 E K
´1
1
!x1β1 “ 0 (3.70)

!xJ
2γ2
E !x1γ1 “ 0 (3.71)

The above equation holds true for all pairs of image points p!x1γ1 , !x2γ2q that
are in correspondence, i.e. are projections of the same point of the scene.
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3.5.1 Constraints on E

Matrix E has rank two, and therefore there holds

|E| “ 0 (3.72)

true.
We will now derive additional constraints on E. Let us consider that we

can write, Equation 3.48,

E “ R

”

!Cε1

ı

ˆ
(3.73)

Let us introduce !Cε1 “
“

x y z
‰J

and evaluate

EJE “
ˆ

R

”

!Cε1

ı

ˆ

˙J

R

”

!Cε1

ı

ˆ
“

”

!Cε1

ıJ

ˆ
RJR

”

!Cε1

ı

ˆ
“

”

!Cε1

ıJ

ˆ

”

!Cε1

ı

ˆ
(3.74)

“

»

–

0 z ´y
´z 0 x

y ´x 0

fi

fl

»

–

0 ´z y
z 0 ´x

´y x 0

fi

fl “

»

–

z2 ` y2 ´x y ´x z
´x y z2 ` x2 ´y z
´x z ´y z y2 ` x2

fi

fl

“

»

–

x2 ` y2 ` z2

x2 ` y2 ` z2

x2 ` y2 ` z2

fi

fl ´

»

–

x x x y x z
x y y y y z
x z y z z z

fi

fl

“ }!Cε1}2I´ !Cε1 !C
J
ε1 (3.75)

We can multiply the above expression by E from the left again to get an
interesting equation

E EJE “ E

´

}!Cε1}2I´ !Cε1 !C
J
ε1

¯

“ }!Cε1}2E “
1

2
trace pEJEq E (3.76)

or equivalently
2 E EJE “ trace pEJEq E (3.77)
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which provides nine equations on elements of E.
In fact, these equations also imply |E| “ 0. Consider that Equation 3.77

implies
`

2 E EJ ´ trace pEJEq I
˘

E “ 0 (3.78)

For Equation 3.78 to hold true, either E can’t have the full rank, i.e. |E| “ 0,
or 2 E EJ ´ trace pEJEq I “ 0. The latter case gives

0 “ trace p2 E EJ ´ trace pEJEq Iq “ 2 trace pE EJq ´ 3 trace pEJEq(3.79)

Let us check the relationship between trace pEJEq and trace pE EJq now.
We write

trace pEJEq “ pE2
11 ` E2

21 ` E2
31q ` pE2

12 ` E2
22 ` E2

32q ` pE2
13 ` E2

23 ` E2
33q

“ pE2
11 ` E2

12 ` E2
13q ` pE2

21 ` E2
22 ` E2

23q ` pE2
31 ` E2

32 ` E2
33q

“ trace pE EJq (3.80)

Substituting the above into Equation 3.79 gets us

0 “ 2 trace pE EJq ´ 3 trace pEJEq “ ´trace pEJEq (3.81)

Equation 2 E EJ ´ trace pEJEq I “ 0 also implies

2 E EJ “ trace pEJEq I (3.82)

|2 E EJ| “ |trace pEJEq I| (3.83)

23|E|2 “ ptrace pEJEqq3 (3.84)

23|E|2 “ 0 (3.85)

|E| “ 0 (3.86)

Therefore, Equation 3.77 implies |E| “ 0.
Let us now look at constraints on matrix G “ τ E, for some non-zero real
τ. We can multiply Equation 3.78 by τ3 to get

τ3
`

2 E EJ ´ trace pEJEq I
˘

E “ 0 (3.87)
`

2 pτ Eq pτ EJq ´ trace ppτ EJq pτ Eqq I
˘

pτ Eq “ 0 (3.88)
`

2 G GJ ´ trace pGJGq I
˘

G “ 0 (3.89)
65



T Pajdla. Elements of Geometry for Computer Vision and Robotics 2020-4-26 (pajdla@cvut.cz)

Clearly, rank pGq “ rank pτ Eq “ rank pEq “ 2.
We conclude that constraints on E and G are the same.

3.5.2 Geometrical interpretation of Equation 3.77

!y

!C

!C ˆ !y

!C ˆ p!C ˆ !yq
!C ˆ p!C ˆ p!C ˆ !yqq

Figure 3.3: Identity !Cε1 ˆ p!Cε1 ˆ p!Cε1 ˆ !yqq “ ´}!Cε1}2p!Cε1 ˆ !yq.

Let us provide a geometrical interpretation of Equation 3.77. We will
mutiply both sides of Equation 3.77 by a vector !y P R3 and write

2 E EJE !y “ trace pEJEq E !y (3.90)

2 R
”

!Cε1

ı

ˆ

”

!Cε1

ıJ

ˆ

”

!Cε1

ı

ˆ
!y “ 2 }!Cε1}2 R

”

!Cε1

ı

ˆ
!y (3.91)

´R
”

!Cε1

ı

ˆ

”

!Cε1

ı

ˆ

”

!Cε1

ı

ˆ
!y “ R }!Cε1}2

”

!Cε1

ı

ˆ
!y (3.92)

”

!Cε1

ı

ˆ

”

!Cε1

ı

ˆ

”

!Cε1

ı

ˆ
!y “ ´}!Cε1}2

”

!Cε1

ı

ˆ
!y (3.93)

Now, we use that for every two vectors !x, !y P R3 there holds r!xsˆ !y “ !xˆ!y
true to get

!Cε1 ˆ p!Cε1 ˆ p!Cε1 ˆ !yqq “ ´}!Cε1}2p!Cε1 ˆ !yq (3.94)

which is a familiar identity of the vector pruduct in R3, Figure 3.3.
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3.5.3 Characterization of E

Let us next see that a non-zero 3 ˆ 3 real matrix satisfying Equation 3.77
has rank two and can be written in the form of Equation 3.73 for some
rotation R and some vector Cε1 .

Consider a real 3 ˆ 3 matrix E such that Equation 3.77 holds true. We
will make here use of the SVD decomposition [2, p. 411] of real matrices.
We can write

E “ U

»

–

a
b

c

fi

fl VJ (3.95)

for some real non-negative a, b, c and some orthogonal real 3 ˆ 3 matrices
U, V, such that UJ U “ I, and VJ V “ I [2, p. 411]. One can see that UJ U “ I,
and VJ V “ I implies |U| “ ˘1, |V| “ ˘1.

Using Equation 3.95 we get

E EJ “ U

»

–

a2

b2

c2

fi

fl UJ, EJE “ V

»

–

a2

b2

c2

fi

fl VJ (3.96)

and trace pEJEq “ trace pV D2VJq “ trace pV D2V´1q “ trace pD2q since matri-
ces D2 and E EJ are similar and hence their traces, which are the sums of
their eigenvalues, are equal. Now, we can rewrite Equation 3.77 as

¨

˝2 U

»

–

a2

b2

c2

fi

fl UJ ´ pa2 ` b2 ` c2q I

˛

‚U

»

–

a
b

c

fi

fl VJ “ 0(3.97)

2 U

»

–

a3

b3

c3

fi

fl VJ ´ pa2 ` b2 ` c2q U

»

–

a
b

c

fi

fl VJ “ 0(3.98)
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Matrices U, V are regular and thus we get

2

»

–

a3

b3

c3

fi

fl ´ pa2 ` b2 ` c2q

»

–

a
b

c

fi

fl “ 0 (3.99)

which finally leads to the following three equations

a3 ´ a b2 ´ a c2 “ a pa2 ´ b2 ´ c2q “ 0 (3.100)

b3 ´ b a2 ´ b c2 “ b pb2 ´ c2 ´ a2q “ 0 (3.101)

c3 ´ c a2 ´ c b2 “ c pc2 ´ a2 ´ b2q “ 0 (3.102)

We see that there are the following two exclusive cases:

1. If any two of a, b, c are zero, then the third one is zero too. For
instance, if a “ b “ 0, then Equation 3.102 gives c3 “ 0. This can’t
happen for a non-zero E.

2. If any two of a, b, c are non-zero, then the two non-zero are equal
and the third is zero. For instance, if a ‰ 0 and b ‰ 0, then Equa-
tions 3.100, 3.101 imply c2 “ 0 and thus a2 “ b2, which gives a “ b
since a, b are non-negative, i.e. rank pEq “ 2.

We thus conclude that E can be written as

E “ U

»

–

a
a

0

fi

fl VJ “ U

»

–

0 1 0
´1 0 0

0 0 1

fi

fl

»

–

0 ´a 0
a 0 0
0 0 0

fi

fl VJ (3.103)

“ W

»

–

»

–

0
0
a

fi

fl

fi

fl

ˆ

VJ “ W

»

–VJV

»

–

0
0
a

fi

fl

fi

fl

ˆ

VJ “ W
pVJq´J

|pVJq´J|

»

–V

»

–

0
0
a

fi

fl

fi

fl

ˆ

(3.104)

“ psign p|W|qq2 W VJ sign p
ˇ

ˇVJ
ˇ

ˇq ra v3sˆ (3.105)

“ sign p|W|q W VJ sign p
ˇ

ˇVJ
ˇ

ˇq rsign p|W|q a v3sˆ (3.106)

“ R rsign p|U|q a v3sˆ (3.107)
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for some non-negative a and the third column v3 of V. Parameter a is
zero for E “ 0 and positive for rank two matrices E. We introduced a
new matrix W in Equation 3.104, which is the product of U and a rotation
round the z axis. We also used VJV “ I, and finally Equation 1.51. In
Equation 3.105 we used psign p|W|qq2 “ 1, V´J “ V for VJV “ I. Matrix R “
sign p|pWq|q W VJ sign p

ˇ

ˇVJ
ˇ

ˇq in Equation 3.107 is a rotation since sign p|pWq|q W
as well as VJ sign p

ˇ

ˇVJ
ˇ

ˇq are both rotations. Finally, we see that sign p|W|q “
sign p|U|q.

3.5.4 Computing a non-zero multiple of E

Let us now disscuss how to compute a non-zero multiple of matrix E from
image matches.

3.5.4.1 Selecting equations

Every pair of image matches p!x1γ1 , !x2γ2q provides a linear constratint on
elements of E in the form of Equation 3.71 and matricial Equation 3.77
gives nine polynomial constraints for elements of E.

We have already seen in Paragraph 3.2 that a non-zero multiple of E
can be obtained from seven absolutely accurate point correspondences
using the constraint |E| “ 0. The solution was obtained by solving a set of
polynomial equations out of which seven were linear and the eighth one
was a third order polynomial.

Let us now see how to exploit Equation 3.77 in order to compute a
non-zero multiple of E from as few image matches as possible.

An idea might be to use Equations 3.77 instead of |E| “ 0. It would
be motivated by the fact that Equations 3.77 imply equation |E| “ 0 for
real 3 ˆ 3 matrices E. Unfortunately, this implication does not hold true
when we allow complex numbers in E1, which we have to do if we want to

1Equation |E| “ 0 can’t be generated from Equations 3.77 as their algebraic combination,
i.e. |E| “ 0 is not in the ideal [12] generated by Equations 3.77. It means that there
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obtain E as a solution to a polynomial system without using any additional
constraints. We have to therefore use |E| “ 0 as well.

The next question is whether we have to use all nine Equations 3.77. It
can be shown similarly as above that indeed none of the equations 3.77 is
in the ideal [12] generated by the others2. Therefore, we have to use all

might be some matrices E satisfying Equations 3.77 which do not satisfy |E| “ 0. We
know that such matrices can’t be real. The proof of the above claim can be obtained
by the following program in Maple [13]

>with(LinearAlgebra):
>with(Groebner):
>E:=¡¡e11—e12—e13¿,¡e21—e22—e23¿,¡e31—e32—e33¿¿:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>v:=indets(eq):
>mo:=tdeg(op(v)):
>G:=Basis(eq,mo):
>Reduce(Determinant(E),G,mo);
e11 e22 e33 - e11 e23 e32 + e21 e32 e13 - e21 e12 e33 + e31 e12 e23 - e31 e22 e13

which computes the Groebner basis G of the ideal generated by Equations 3.77 and
verifies that the remainder on division of |E| by G is non-zero [12].

2To show that none of the equations 3.77 is in the ideal generated by the others, we run
the following test in Maple.

>with(LinearAlgebra):
>with(Groebner):
>E:=¡¡e11—e12—e13¿,¡e21—e22—e23¿,¡e31—e32—e33¿¿:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>

>ReduceEqByEqn:=proc(eq,eqn)
local mo,G;
mo:=tdeg(op(indets(eqn)));
G:=Basis(eqn,mo);
Reduce(eq,G,mo);

end proc:
>

>for i from 1 to 9 do
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Equations 3.77 as well as |E| “ 0. Hence we have altogether ten polynomial
equations of order higher than one.

We have more equations than unknowns but they still do not fully
determine E. We have to add some more equations from image matches.
To see how many equations we have to add, we evaluate the Hilbert
dimension [12] of the ideal generated by Equations 3.77 and |E| “ 0. We
know [12] that a system of polynomial equations has a finite number of
solutions if and only if the Hilbert dimension of the ideal generated by the
system is zero.

The Hilbert dimension of the ideal generated by Equations 3.77 and |E| “
0 is equal to six3. An extra linear equation reduces the Hilbert dimension

ReduceEqByEqn(eq[i],eq[[op({$1..9}minus {i})]]);
end;

e113 `e11 e122 `e11 e132 `e11 e212 `2 e21 e12 e22`2 e21 e13 e23`e11 e312 `2 e31 e12 e32`2 e31 e13 e33´e11 e222 ´e11 e322 ´
e11 e232 ´ e11 e332

e112 e21`2 e11 e12 e22`2 e11 e13 e23`e213 `e21 e222 `e21 e232 `e21 e312 `2 e31 e22 e32`2 e31 e23 e33´e21 e122 ´e21 e322 ´
e21 e132 ´ e21 e332

e112 e31`2 e11 e12 e32`2 e11 e13 e33`e212 e31`2 e21 e22 e32`2 e21 e23 e33`e313 `e31 e322 `e31 e332 ´e31 e122 ´e31 e222 ´
e31 e132 ´ e31 e232

e12 e112 `e123 `e12 e132 `2 e22 e11 e21`e12 e222 `2 e22 e13 e23`2 e32 e11 e31`e12 e322 `2 e32 e13 e33´e12 e212 ´e12 e312 ´
e12 e232 ´ e12 e332

2 e12 e11 e21`e122 e22`2 e12 e13 e23`e22 e212 `e223 `e22 e232 `2 e32 e21 e31`e22 e322 `2 e32 e23 e33´e22 e112 ´e22 e312 ´
e22 e132 ´ e22 e332

2 e12 e11 e31`e122 e32`2 e12 e13 e33`2 e22 e21 e31`e222 e32`2 e22 e23 e33`e32 e312 `e323 `e32 e332 ´e32 e112 ´e32 e212 ´
e32 e132 ´ e32 e232

e13 e112 `e13 e122 `e133 `2 e23 e11 e21`2 e23 e12 e22`e13 e232 `2 e33 e11 e31`2 e33 e12 e32`e13 e332 ´e13 e212 ´e13 e312 ´
e13 e222 ´ e13 e322

2 e13 e11 e21`2 e13 e12 e22`e132 e23`e23 e212 `e23 e222 `e233 `2 e33 e21 e31`2 e33 e22 e32`e23 e332 ´e23 e112 ´e23 e312 ´
e23 e122 ´ e23 e322

2 e13 e11 e31`2 e13 e12 e32`e132 e33`2 e23 e21 e31`2 e23 e22 e32`e232 e33`e33 e312 `e33 e322 `e333 ´e33 e112 ´e33 e212 ´

e33 e122 ´ e33 e222

3The Hilber Dimension of the ideal is computed in Maple as follows

>with(LinearAlgebra):
>E:=¡¡e11—e12—e13¿,¡e21—e22—e23¿,¡e31—e32—e33¿¿:
>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
>eq:=expand(convert(convert(eM,Vector),list)):
>with(PolynomialIdeals):
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by one [12]. Hence, five additional (independent) linear equations from
image matches will reduce the Hilbert dimension of the system to one.

Since all equations 3.71, 3.77 and |E| “ 0 are homogeneous, we can’t
reduce the Hibert dimension below one by adding more equations 3.77
from image matches. This reflects the fact that E is fixed by image mea-
surements only up to a non-zero scale.

To conclude, five independent linear equations 3.71 plus Equations 3.77
and |E| “ 0 fix E up to a non-zero scale.

The scale of E has to be fixed in a different way. For instance, one often
knows that some of the elements of E can be set to one. By doing so, an
extra independent linear equation is obtained and the Hilbert dimension
is reduced to zero. Alternatively, one can ask for }E}2 “ 1, which adds a
second order equation. That also reduces the Hilbert dimension to zero
but doubles the number of solutions for E.

3.5.4.2 Solving the equations

We will next describe one way how to solve equations

!xJ
i,2γ2
E !xi,1γ1 “ 0,

`

2 E EJ ´ trace pEJEq I
˘

E “ 0, |E| “ 0, i “ 1, . . . , 5
(3.108)

We will present a solution based on [14], which is somewhat less efficient
than [15, 16] but requires only eigenvalue computation.

>HilbertDimension(¡op(eq),Determinant(E)¿);
6
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First, using Equation 1.90 from Paragraph 1.5, we can write
»

—

—

—

—

—

—

—

—

–

!xJ
1,1γ1

b !xJ
1,2γ2

!xJ
2,1γ1

b !xJ
2,2γ2

!xJ
3,1γ1

b !xJ
3,2γ2

!xJ
4,1γ1

b !xJ
4,2γ2

!xJ
5,1γ1

b !xJ
5,2γ2

!aJ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpEq “

»

—

—

—

—

—

—

–

0
0
0
0
0
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.109)

to obtain a 6 ˆ 9 matrix of a system of linear equations on vpEq. Row !aJ

can be chosen randomly to fix the scale of vpEq. There is only a negligible
chance that it will be chosen in the orthogonal complement of the span of
the solutions to force the solutions be trivial. If so, it can be detected and
a new !aJ generated.

Assuming that the rows of the matrix of the system are linearly in-
dependent, we obtain a 3-dimensional affine space of solutions. After
rearranging the particular solution, resp. the basis of the solution of the
associated homogeneous system, back to 3 ˆ 3 matrices G0, resp. G1, G2, G3,
we will get all solutions compatible with Equation 3.109 in the form

G “ G0 ` x G1 ` y G2 ` z G3 (3.110)

for x, y, z P R.
Now, we can substitute G for E into the two remaining equations in 3.108.

We get ten trird-order polynomial equations in three unknowns and with
20 monomials. We can write it as

M m “ 0 (3.111)

where M is a constant 10 ˆ 20 matrix4 and

mJ “ rx3, y x2, y2x, y3, z x2, z y x, z y2, z2x, z2y, z3, x2, y x, y2, z x, z y, z2, x, y, z, 1s
(3.112)

4Matrix M can be obtained by the following Maple [13] program
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is a vector of 20 monomials.
Next, we rewrite the system 3.112 as

pz3C3 ` z2C2 ` z C1 ` C0q c “ 0 (3.113)

with

C “ z3C3 ` z2C2 ` z C1 ` C0 (3.114)

containing 10 monomials. Matrices C0, . . . , C4 are constant 10ˆ10 matrices

C0 “
“

m1 m2 m3 m4 m11 m12 m13 m17 m18 m20
‰

(3.115)

C1 “
“

0 0 0 0 m5 m6 m7 m14 m15 m19
‰

(3.116)

C2 “
“

0 0 0 0 0 0 0 m8 m9 m16
‰

(3.117)

C3 “
“

0 0 0 0 0 0 0 0 0 m10
‰

(3.118)

where mi are columns of M.
Since m contains all monomials in x, y, z up to degree three, we could

have written similar equations as Equation 3.113 with x and y.

>with(LinearAlgebra):
>G0:=¡¡g011—g012—g013¿,¡g021—g022—g023¿,¡g031—g032—g033¿¿:
>G1:=¡¡g111—g112—g113¿,¡g121—g122—g123¿,¡g131—g132—g133¿¿:
>G2:=¡¡g211—g212—g213¿,¡g221—g222—g223¿,¡g231—g232—g233¿¿:
>G3:=¡¡g311—g312—g313¿,¡g321—g322—g323¿,¡g331—g332—g333¿¿:
>trc:=E-¿simplify((2*E.Transpose(E)-Trace(Transpose(E).E)*IdentityMatrix(3,3)).E):
>eq:=[op(convert(trc(G),listlist)),Determinant(G)]:
>mo:=tdeg(x,y,z);
>m:=PolyVarMonomials(eq,mo);

m :“ rx3 , y x2 , y2x, y3 , z x2 , z y x, z y2 , z2x, z2 y, z3 , x2 , y x, y2 , z x, z y, z2 , x, y, z, 1s

>M:=PolyCoeffMatrix(eq,m,mo):
>M[1,1];

2 g122 g112 g121`2 g133 g113 g131´ g1232 g111´ g1222 g111`2 g132 g112 g131´ g1322 g111` g1312 g111` g1122 g111`

g1113 ` 2 g123 g113 g121 ´ g1332 g111 ` g1212 g111 ` g1132 g111
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Equation 3.113 is known as a Polynomial Eigenvealue Problem (PEP) [17]
of degree three. The strandard solution to such a problem is to relax it into
a generelized eigenvalue problem of a larger size as follows.

We can write z2c “ z pzcq and zc “ z pcq altogether with Equation 3.113
in a matrix form as

»

–

0 I 0

0 0 I

´C0 ´C1 ´C2

fi

fl

»

–

c

zc
z2c

fi

fl “ z

»

–

I 0 0

0 I 0

0 0 C3

fi

fl

»

–

c

zc
z2c

fi

fl (3.119)

A v “ z B v (3.120)

This is a Generelized Eigenvalue Problem (GEP) [17] of size 30ˆ30, which
can be solved for z and v. Values of x, y can be recovered from v as
x “ c8{c10 and x “ c9{c10. It provides 30 solutions in general.

When C0 is regular, we can pass to a standard eigenvalue problem for a
non-zero z by inverting A and using w “ 1{z

»

–

´C´1
0 C1 ´C´1

0 C2 ´C´1
0 C3

I O 0

0 I 0

fi

fl

»

–

w2c

wc
c

fi

fl “ w

»

–

w2c

wc
c

fi

fl (3.121)
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