
GVG Lab-04 Solution
Task 1. Create companion matrix Mf for polynomial f = 2x3 − 6x2 + 11x− 6.

Solution: The companion matrix Mf for a general univariate polynomial f = anx
n + · · ·+ a1x+ a0, an 6= 0

is defined to be

Mf =


0 · · · 0 − a0

an
1 · · · 0 − a1

an
...

. . .
...

...
0 · · · 1 −an−1

an


It can be verified by direct computation that det(xI −Mf ) = 1

an
· f , which means that the roots of f can be

obtained as the eigenvalues of Mf .
For the polynomial given in the task the companion matrix equals

Mf =

0 0 3
1 0 − 11

2
0 1 3


�

Task 2. Find a basis α = (~a1,~a2,~a3) such that vector ~x, which is obtained as ~u = 2 ~b1 + 3 ~b2 as shown in the
following figure, would have coordinates in α equal to [2, 3, 2]>. Write down the coordinates of the vectors of α

in basis β = (~b1,~b2,~b3).
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Solution: We can see that
~x = ~u+~b3

By the task, we need to find linearly independent free vectors ~a1, ~a2 and ~a3 such that

2~a1 + 3~a2 + 2~a3 = 2~b1 + 3~b2 +~b3

There are, obviously, infinitely many choices for ~a1,~a2,~a3, since ~a1 and ~a2 can be chosen to be arbitrary linearly
independent vectors and ~a3 is defined then by

~a3 =
1

2

(
2~b1 + 3~b2 +~b3 − 2~a1 − 3~a2

)
The simplest choice is to take

~a1 = ~b1,~a2 = ~b2,~a3 =
1

2
~b3.

The coordinates of the vectors of α in basis β are

~a1β =

1
0
0

 , ~a2β =

0
1
0

 , ~a3β =

0
0
1
2


�

Task 3. Let us have a camera with camera projection matrix

P =

1 0 1 1
0 1 1 1
0 0 1 1


Write the cosine of the angle between rays passing through image points [0, 0]> a [1, 1]>.

C

~x1

~x2

x1

x2

Figure 1: Two projection rays passing through the image points x1 and x2

2



Solution: We first compute the camera calibration matrix of the given camera projection matrix. For this we
decompose the left 3× 3 block B of P:

k23 = b>2 b3 =
[
0 1 1

] 0
0
1

 = 1,

k13 = b>1 b3 =
[
1 0 1

] 0
0
1

 = 1,

k222 + 12 = b>2 b2 =
[
0 1 1

] 0
1
1

 = 2⇒ k22 = 1,

k12 · 1 + 1 · 1 = b>1 b2 =
[
1 0 1

] 0
1
1

 = 1⇒ k12 = 0,

k211 + 02 + 12 = b>1 b1 =
[
1 0 1

] 1
0
1

 = 2⇒ k11 = 1.

Hence

K =

1 0 1
0 1 1
0 0 1


Remark. If the left 3 × 3 block B of P is an upper triangular matrix, then K = B or K = BRx or K = BRy or
K = BRz, where Ra is a rotation about axis a by 180◦. In other words, the only upper triangular rotations are
I, Rx, Ry, Rz. To prove this notice that B = KR and since K must also be upper triangular, then so is R. This is
because R = K−1B and the inverse of an upper triangular matrix is upper triangular. The only upper triangular
rotations are I, Rx, Ry, Rz. To show this notice that the last row must be equal to

[
0 0 ±1

]
since the norms

of rows must be equal to 1. Further, the first column must be equal to
[
±1 0 0

]>
for the same reason. Since

r11 = 1, then r12 = r13 = 0. Since r33 = 1, then r13 = r23 = 0. Since r21 = r23 = 0 and det R = r11r22r33 = 1,
then r22 = 1

r11r33
. Thus, there are 4 possibilities how to choose signs of r11 and r33 which gives rise to 4 rotations

R = I, Rx, Ry, Rz.

The direction vectors of the rays passing through the given image points are given by

~x1β =

[
~u1α
1

]
=

0
0
1

 , ~x2β =

[
~u2α
1

]
=

1
1
1


To obtain the angle between the direction vectors by evaluating the scalar product of the vectors, we need to
pass to an orthogonal basis (e.g. γ):

~x1γ = K−1~x1β =

1 0 1
0 1 1
0 0 1

−1 0
0
1

 =

−1
−1
1

 , ~x2γ = K−1~x2β =

1 0 1
0 1 1
0 0 1

−1 1
1
1

 =

0
0
1



cos∠(~x1, ~x2) =
~x>1γ~x2γ

‖~x1γ‖ ‖~x2γ‖
=

[
−1 −1 1

] 0
0
1


√

3 · 1
=

1√
3

Remark. Actually, we could use another orthogonal basis, namely κ (see [1, Figure 7.2 (d)]). The transition
matrix Tβ→κ equals (KR)−1 = P−11:3,1:3. However, since P1:3,1:3 = K in this task, then

~x1κ = ~x1γ , ~x2κ = ~x2γ

cos∠(~x1, ~x2) =
~x>1κ~x2κ

‖~x1κ‖ ‖~x2κ‖
=

1√
3

Hence computing cos∠(~x1, ~x2) using this method requires less computations.
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Task 4 (P3P Problem). Compute the calibrated camera pose (R, ~Cδ) of the camera with camera calibration
matrix

K =

1 0 2
0 1 3
0 0 1


if you know that 3 world points

~X1δ =

1
0
0

 , ~X2δ =

0
1
0

 , ~X3δ =

0
0
1


project to the following image points

~u1α =

[
3
3

]
, ~u2α =

[
1
4

]
, ~u3α =

[
1
1

]
respectively.

C

X1 X2

X3

η3
~x3

‖~x3δ‖

η2
~x2

‖~x2δ‖

η3
~x3

‖~x3δ‖

~x1

~x3

~x2

O

~d3

~d1

~d2

~C

Figure 2: P3P Problem

Solution: We first obtain the coordinates of the vectors representing the image points in the camera coordinate
system (C, β):

~x1β =

[
~u1α
1

]
=

3
3
1

 , ~x2β =

[
~u2α
1

]
=

1
4
1

 , ~x3β =

[
~u3α
1

]
=

1
1
1


To obtain the angle between the direction vectors by evaluating the scalar product of the vectors, we need to
pass to an orthogonal basis (e.g. γ):

~x1γ = K−1~x1β =

1 0 2
0 1 3
0 0 1

−1 3
3
1

 =

1
0
1
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~x2γ = K−1~x2β =

1 0 2
0 1 3
0 0 1

−1 1
4
1

 =

−1
1
1


~x3γ = K−1~x3β =

1 0 2
0 1 3
0 0 1

−1 1
1
1

 =

−1
−2

1


The cosines of the angles between the rays are then given by

c12 = cos∠(~x1, ~x2) =
~x>1γ~x2γ

‖~x1γ‖ ‖~x2γ‖
=

[
1 0 1

] −1
1
1


√

2 ·
√

3
= 0

c23 = cos∠(~x2, ~x3) =
~x>2γ~x3γ

‖~x2γ‖ ‖~x3γ‖
=

[
−1 1 1

] −1
−2

1


√

3 ·
√

6
= 0

c31 = cos∠(~x3, ~x1) =
~x>3γ~x1γ

‖~x3γ‖ ‖~x1γ‖
=

[
−1 −2 1

] 1
0
1


√

6 ·
√

2
= 0

If we denote by η1, η2, η3 the lengths of vectors
−−→
CX1,

−−→
CX2,

−−→
CX3 in the world units and by d12, d23, d31 the lengths

of vectors
−−−→
X1X2,

−−−→
X2X3,

−−−→
X3X1 in the world units, then by looking at the triangles4CX1X2,4CX2X3,4CX3X1

we can write the equations coming from the cosine rule ([1, Equations 7.60-7.62]):

d212 = η21 + η22 (1)

d223 = η22 + η23 (2)

d231 = η23 + η21 (3)

We have used the fact that all the cosines c12, c23, c31 are zero. We compute the distances between the world
points:

d12 =
∥∥∥ ~X1δ − ~X2δ

∥∥∥ =

∥∥∥∥∥∥
1

0
0

−
0

1
0

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 1
−1

0

∥∥∥∥∥∥ =
√

2⇒ d212 = 2

d23 =
∥∥∥ ~X2δ − ~X3δ

∥∥∥ =

∥∥∥∥∥∥
0

1
0

−
0

0
1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 0

1
−1

∥∥∥∥∥∥ =
√

2⇒ d223 = 2

d31 =
∥∥∥ ~X3δ − ~X1δ

∥∥∥ =

∥∥∥∥∥∥
0

0
1

−
1

0
0

∥∥∥∥∥∥ =

∥∥∥∥∥∥
−1

0
1

∥∥∥∥∥∥ =
√

2⇒ d231 = 2

We can rewrite Equations (1), (2), (3) in a matrix form:1 1 0
0 1 1
1 0 1

η21η22
η23

 =

2
2
2


η21η22
η23

 =

1 1 0
0 1 1
1 0 1

−1 2
2
2

 =

 0.5 −0.5 0.5
0.5 0.5 −0.5
−0.5 0.5 0.5

2
2
2

 =

1
1
1


Taking into account that the depths η1, η2, η3 must be positive, we get

η1 = 1, η2 = 1, η3 = 1.
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Finally, we compute the camera pose (R, ~Cδ) using [1, Equations 7.122-7.124]:

η1
~x1γ
‖~x1γ‖

= R( ~X1δ − ~Cδ)

η2
~x2γ
‖~x2γ‖

= R( ~X2δ − ~Cδ)

η3
~x3γ
‖~x3γ‖

= R( ~X3δ − ~Cδ)

Eliminating ~Cδ and using the properties of the rotation matrix we get [1, Equations 7.125, 7.126, 7.129]:

1√
3

−1
1
1

− 1√
2

1
0
1


︸ ︷︷ ︸

~Z2ε

= R


0

1
0

−
1

0
0


︸ ︷︷ ︸

~Z2δ



1√
6

−1
−2

1

− 1√
2

1
0
1


︸ ︷︷ ︸

~Z3ε

= R


0

0
1

−
1

0
0


︸ ︷︷ ︸

~Z3δ


 1√

3

−1
1
1

− 1√
2

1
0
1

×
 1√

6

−1
−2

1

− 1√
2

1
0
1


︸ ︷︷ ︸

~Z1ε

= R


0

1
0

−
1

0
0

×
0

0
1

−
1

0
0


︸ ︷︷ ︸

~Z1δ


The rotation matrix R can be computed using [1, Equation 7.134]:

R =
[
~Z1ε

~Z2ε
~Z3ε

] [
~Z1δ

~Z2δ
~Z3δ

]−1
=

=

 3
√
2−2
√
3−
√
6

6 − 2
√
3+3
√
2

6 −
√
6+3
√
2

6√
3−
√
6

3

√
3
3 −

√
6
3

3
√
2+2
√
3+
√
6

6
2
√
3−3
√
2

6

√
6−3
√
2

6


1 −1 0

1 1 −1
1 0 1

−1 =

=

 3
√
2−2
√
3−
√
6

6 − 2
√
3+3
√
2

6 −
√
6+3
√
2

6√
3−
√
6

3

√
3
3 −

√
6
3

3
√
2+2
√
3+
√
6

6
2
√
3−3
√
2

6

√
6−3
√
2

6

 1

3

 1 1 1
−1 2 −1
−1 −1 2

 =


√
2
2 −

√
3
3 −

√
6
6

0
√
3
3 −

√
6
3√

2
2

√
3
3

√
6
6


The camera projection center ~Cδ can be computed using [1, Equation 7.135]:

~Cδ = ~X1δ − R>η1
~x1γ
‖~x1γ‖

=

1
0
0

−

√
2
2 0

√
2
2

−
√
3
3

√
3
3

√
3
3

−
√
6
6 −

√
6
3

√
6
6

 1√
2

1
0
1

 =

1
0
0

− 1√
2

√2
0
0

 =

0
0
0

 .
�

References

[1] Tomas Pajdla, Elements of geometry for computer vision, https://cw.fel.cvut.cz/wiki/_media/

courses/gvg/pajdla-gvg-lecture-2021.pdf.

6

https://cw.fel.cvut.cz/wiki/_media/courses/gvg/pajdla-gvg-lecture-2021.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/gvg/pajdla-gvg-lecture-2021.pdf

