GVG Lab-04 Solution

Task 1. Create companion matrix M_{f} for polynomial $f=2 x^{3}-6 x^{2}+11 x-6$.
Solution: The companion matrix M_{f} for a general univariate polynomial $f=a_{n} x^{n}+\cdots+a_{1} x+a_{0}, a_{n} \neq 0$ is defined to be

$$
M_{f}=\left[\begin{array}{cccc}
0 & \cdots & 0 & -\frac{a_{0}}{a_{n}} \\
1 & \cdots & 0 & -\frac{a_{1}}{a_{n}} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & -\frac{a_{n-1}}{a_{n}}
\end{array}\right]
$$

It can be verified by direct computation that $\operatorname{det}\left(x \mathrm{I}-M_{f}\right)=\frac{1}{a_{n}} \cdot f$, which means that the roots of f can be obtained as the eigenvalues of M_{f}.

For the polynomial given in the task the companion matrix equals

$$
M_{f}=\left[\begin{array}{rrr}
0 & 0 & 3 \\
1 & 0 & -\frac{11}{2} \\
0 & 1 & 3
\end{array}\right]
$$

Task 2. Find a basis $\alpha=\left(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right)$ such that vector \vec{x}, which is obtained as $\vec{u}=2 \overrightarrow{b_{1}}+3 \overrightarrow{b_{2}}$ as shown in the following figure, would have coordinates in α equal to $[2,3,2]^{\top}$. Write down the coordinates of the vectors of α in basis $\beta=\left(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right)$.

C

Solution: We can see that

$$
\vec{x}=\vec{u}+\vec{b}_{3}
$$

By the task, we need to find linearly independent free vectors \vec{a}_{1}, \vec{a}_{2} and \vec{a}_{3} such that

$$
2 \vec{a}_{1}+3 \vec{a}_{2}+2 \vec{a}_{3}=2 \vec{b}_{1}+3 \vec{b}_{2}+\vec{b}_{3}
$$

There are, obviously, infinitely many choices for $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$, since \vec{a}_{1} and \vec{a}_{2} can be chosen to be arbitrary linearly independent vectors and \vec{a}_{3} is defined then by

$$
\vec{a}_{3}=\frac{1}{2}\left(2 \vec{b}_{1}+3 \vec{b}_{2}+\vec{b}_{3}-2 \vec{a}_{1}-3 \vec{a}_{2}\right)
$$

The simplest choice is to take

$$
\vec{a}_{1}=\vec{b}_{1}, \vec{a}_{2}=\vec{b}_{2}, \vec{a}_{3}=\frac{1}{2} \vec{b}_{3}
$$

The coordinates of the vectors of α in basis β are

$$
\vec{a}_{1 \beta}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \vec{a}_{2 \beta}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \vec{a}_{3 \beta}=\left[\begin{array}{c}
0 \\
0 \\
\frac{1}{2}
\end{array}\right]
$$

Task 3. Let us have a camera with camera projection matrix

$$
P=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Write the cosine of the angle between rays passing through image points $[0,0]^{\top} a[1,1]^{\top}$.

Figure 1: Two projection rays passing through the image points x_{1} and x_{2}

Solution: We first compute the camera calibration matrix of the given camera projection matrix. For this we decompose the left 3×3 block B of P :

$$
\begin{gathered}
k_{23}=\mathrm{b}_{2}^{\top} \mathrm{b}_{3}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=1, \\
k_{13}=\mathrm{b}_{1}^{\top} \mathrm{b}_{3}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=1, \\
k_{22}^{2}+1^{2}=\mathrm{b}_{2}^{\top} \mathrm{b}_{2}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=2 \Rightarrow k_{22}=1, \\
k_{12} \cdot 1+1 \cdot 1=\mathrm{b}_{1}^{\top} \mathrm{b}_{2}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=1 \Rightarrow k_{12}=0, \\
k_{11}^{2}+0^{2}+1^{2}=\mathrm{b}_{1}^{\top} \mathrm{b}_{1}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=2 \Rightarrow k_{11}=1 .
\end{gathered}
$$

Hence

$$
\mathrm{K}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Remark. If the left 3×3 block B of P is an upper triangular matrix, then $\mathrm{K}=\mathrm{B}$ or $\mathrm{K}=\mathrm{BR}_{x}$ or $\mathrm{K}=\mathrm{BR}_{y}$ or $\mathrm{K}=\mathrm{BR}_{z}$, where R_{a} is a rotation about axis a by 180°. In other words, the only upper triangular rotations are $\mathrm{I}, \mathrm{R}_{x}, \mathrm{R}_{y}, \mathrm{R}_{z}$. To prove this notice that $\mathrm{B}=\mathrm{KR}$ and since K must also be upper triangular, then so is R . This is because $\mathrm{R}=\mathrm{K}^{-1} \mathrm{~B}$ and the inverse of an upper triangular matrix is upper triangular. The only upper triangular rotations are $\mathrm{I}, \mathrm{R}_{x}, \mathrm{R}_{y}, \mathrm{R}_{z}$. To show this notice that the last row must be equal to $\left[\begin{array}{lll}0 & 0 & \pm 1\end{array}\right]$ since the norms of rows must be equal to 1. Further, the first column must be equal to $\left[\begin{array}{ccc} \pm 1 & 0 & 0\end{array}\right]^{\top}$ for the same reason. Since $r_{11}=1$, then $r_{12}=r_{13}=0$. Since $r_{33}=1$, then $r_{13}=r_{23}=0$. Since $r_{21}=r_{23}=0$ and $\operatorname{det} R=r_{11} r_{22} r_{33}=1$, then $r_{22}=\frac{1}{r_{11} r_{33}}$. Thus, there are 4 possibilities how to choose signs of r_{11} and r_{33} which gives rise to 4 rotations $\mathrm{R}=\mathrm{I}, \mathrm{R}_{x}, \mathrm{R}_{y}, \mathrm{R}_{z}$.

The direction vectors of the rays passing through the given image points are given by

$$
\vec{x}_{1 \beta}=\left[\begin{array}{c}
\vec{u}_{1 \alpha} \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \vec{x}_{2 \beta}=\left[\begin{array}{c}
\vec{u}_{2 \alpha} \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

To obtain the angle between the direction vectors by evaluating the scalar product of the vectors, we need to pass to an orthogonal basis (e.g. γ):

$$
\begin{gathered}
\vec{x}_{1 \gamma}=\mathrm{K}^{-1} \vec{x}_{1 \beta}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right], \quad \vec{x}_{2 \gamma}=\mathrm{K}^{-1} \vec{x}_{2 \beta}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
\cos \angle\left(\vec{x}_{1}, \vec{x}_{2}\right)=\frac{\vec{x}_{1 \gamma}^{\top} \vec{x}_{2 \gamma}}{\left\|\vec{x}_{1 \gamma}\right\|\left\|\vec{x}_{2 \gamma}\right\|}=\frac{\left[\begin{array}{lll}
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}{\sqrt{3} \cdot 1}=\frac{1}{\sqrt{3}}
\end{gathered}
$$

Remark. Actually, we could use another orthogonal basis, namely κ (see [1, Figure 7.2 (d)]). The transition matrix $\mathrm{T}_{\beta \rightarrow \kappa}$ equals $(\mathrm{KR})^{-1}=\mathrm{P}_{1: 3,1: 3}^{-1}$. However, since $\mathrm{P}_{1: 3,1: 3}=\mathrm{K}$ in this task, then

$$
\begin{gathered}
\vec{x}_{1 \kappa}=\vec{x}_{1 \gamma}, \quad \vec{x}_{2 \kappa}=\vec{x}_{2 \gamma} \\
\cos \angle\left(\vec{x}_{1}, \vec{x}_{2}\right)=\frac{\vec{x}_{1 \kappa}^{\top} \vec{x}_{2 \kappa}}{\left\|\vec{x}_{1 \kappa}\right\|\left\|\vec{x}_{2 \kappa}\right\|}=\frac{1}{\sqrt{3}}
\end{gathered}
$$

Hence computing $\cos \angle\left(\vec{x}_{1}, \vec{x}_{2}\right)$ using this method requires less computations.

Task 4 (P3P Problem). Compute the calibrated camera pose ($\mathrm{R}, \vec{C}_{\delta}$) of the camera with camera calibration matrix

$$
\mathrm{K}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]
$$

if you know that 3 world points

$$
\vec{X}_{1 \delta}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \vec{X}_{2 \delta}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \vec{X}_{3 \delta}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

project to the following image points

$$
\vec{u}_{1 \alpha}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \quad \vec{u}_{2 \alpha}=\left[\begin{array}{l}
1 \\
4
\end{array}\right], \quad \vec{u}_{3 \alpha}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

respectively.

Figure 2: P3P Problem

Solution: We first obtain the coordinates of the vectors representing the image points in the camera coordinate system (C, β) :

$$
\vec{x}_{1 \beta}=\left[\begin{array}{c}
\vec{u}_{1 \alpha} \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right], \quad \vec{x}_{2 \beta}=\left[\begin{array}{c}
\vec{u}_{2 \alpha} \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right], \quad \vec{x}_{3 \beta}=\left[\begin{array}{c}
\vec{u}_{3 \alpha} \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

To obtain the angle between the direction vectors by evaluating the scalar product of the vectors, we need to pass to an orthogonal basis (e.g. γ):

$$
\vec{x}_{1 \gamma}=\mathrm{K}^{-1} \vec{x}_{1 \beta}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \vec{x}_{2 \gamma}=\mathrm{K}^{-1} \vec{x}_{2 \beta}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right] \\
& \vec{x}_{3 \gamma}=\mathrm{K}^{-1} \vec{x}_{3 \beta}=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-2 \\
1
\end{array}\right]
\end{aligned}
$$

The cosines of the angles between the rays are then given by

$$
\begin{aligned}
& c_{12}=\cos \angle\left(\vec{x}_{1}, \vec{x}_{2}\right)=\frac{\vec{x}_{1 \gamma}^{\top} \vec{x}_{2 \gamma}}{\left\|\vec{x}_{1 \gamma}\right\|\left\|\vec{x}_{2 \gamma}\right\|}=\frac{\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]}{\sqrt{2} \cdot \sqrt{3}}=0 \\
& c_{23}=\cos \angle\left(\vec{x}_{2}, \vec{x}_{3}\right)=\frac{\vec{x}_{2 \gamma}^{\top} \vec{x}_{3 \gamma}}{\left\|\vec{x}_{2 \gamma}\right\|\left\|\vec{x}_{3 \gamma}\right\|}=\frac{\left[\begin{array}{lll}
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
-2 \\
1
\end{array}\right]}{\sqrt{3} \cdot \sqrt{6}}=0 \\
& c_{31}=\cos \angle\left(\vec{x}_{3}, \vec{x}_{1}\right)=\frac{\vec{x}_{3 \gamma}^{\top} \vec{x}_{1 \gamma}}{\left\|\vec{x}_{3 \gamma}\right\|\left\|\vec{x}_{1 \gamma}\right\|}=\frac{\left[\begin{array}{lll}
-1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}{\sqrt{6} \cdot \sqrt{2}}=0
\end{aligned}
$$

If we denote by $\eta_{1}, \eta_{2}, \eta_{3}$ the lengths of vectors $\overrightarrow{C X_{1}}, \overrightarrow{C X_{2}}, \overrightarrow{C X_{3}}$ in the world units and by d_{12}, d_{23}, d_{31} the lengths of vectors $\overrightarrow{X_{1} X_{2}}, \overrightarrow{X_{2} X_{3}}, \overrightarrow{X_{3} X_{1}}$ in the world units, then by looking at the triangles $\triangle C X_{1} X_{2}, \triangle C X_{2} X_{3}, \triangle C X_{3} X_{1}$ we can write the equations coming from the cosine rule ([1, Equations 7.60-7.62]):

$$
\begin{align*}
& d_{12}^{2}=\eta_{1}^{2}+\eta_{2}^{2} \tag{1}\\
& d_{23}^{2}=\eta_{2}^{2}+\eta_{3}^{2} \tag{2}\\
& d_{31}^{2}=\eta_{3}^{2}+\eta_{1}^{2} \tag{3}
\end{align*}
$$

We have used the fact that all the cosines c_{12}, c_{23}, c_{31} are zero. We compute the distances between the world points:

$$
\begin{aligned}
& d_{12}=\left\|\vec{X}_{1 \delta}-\vec{X}_{2 \delta}\right\|=\left\|\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\|=\left\|\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right]\right\|=\sqrt{2} \Rightarrow d_{12}^{2}=2 \\
& d_{23}=\left\|\vec{X}_{2 \delta}-\vec{X}_{3 \delta}\right\|=\left\|\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\|=\left\|\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]\right\|=\sqrt{2} \Rightarrow d_{23}^{2}=2 \\
& d_{31}=\left\|\vec{X}_{3 \delta}-\vec{X}_{1 \delta}\right\|=\left\|\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\|=\left\|\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]\right\|=\sqrt{2} \Rightarrow d_{31}^{2}=2
\end{aligned}
$$

We can rewrite Equations (1), (22, (3) in a matrix form:

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\eta_{1}^{2} \\
\eta_{2}^{2} \\
\eta_{3}^{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]} \\
{\left[\begin{array}{l}
\eta_{1}^{2} \\
\eta_{2}^{2} \\
\eta_{3}^{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{rrr}
0.5 & -0.5 & 0.5 \\
0.5 & 0.5 & -0.5 \\
-0.5 & 0.5 & 0.5
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}
\end{gathered}
$$

Taking into account that the depths $\eta_{1}, \eta_{2}, \eta_{3}$ must be positive, we get

$$
\eta_{1}=1, \quad \eta_{2}=1, \quad \eta_{3}=1 .
$$

Finally, we compute the camera pose ($\mathrm{R}, \vec{C}_{\delta}$) using [1] Equations 7.122-7.124]:

$$
\begin{aligned}
& \eta_{1} \frac{\vec{x}_{1 \gamma}}{\left\|\vec{x}_{1 \gamma}\right\|}=\mathrm{R}\left(\vec{X}_{1 \delta}-\vec{C}_{\delta}\right) \\
& \eta_{2} \frac{\vec{x}_{2 \gamma}}{\left\|\vec{x}_{2 \gamma}\right\|}=\mathrm{R}\left(\vec{X}_{2 \delta}-\vec{C}_{\delta}\right) \\
& \eta_{3} \frac{\vec{x}_{3 \gamma}}{\left\|\vec{x}_{3 \gamma}\right\|}=\mathrm{R}\left(\vec{X}_{3 \delta}-\vec{C}_{\delta}\right)
\end{aligned}
$$

Eliminating \vec{C}_{δ} and using the properties of the rotation matrix we get [1. Equations 7.125, 7.126, 7.129]:

$$
\begin{gathered}
\underbrace{\frac{1}{\sqrt{3}}\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}_{\vec{Z}_{2 \epsilon}}=\mathrm{R}(\underbrace{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}_{\vec{Z}_{2 \delta}}) \\
\underbrace{\frac{1}{\sqrt{6}}\left[\begin{array}{r}
-1 \\
-2 \\
1
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]}_{\vec{Z}_{3 \epsilon}}=\mathrm{R}(\underbrace{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}_{\vec{Z}_{3 \delta}}) \\
\underbrace{\left(\frac{1}{\sqrt{3}}\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right) \times\left(\frac{1}{\sqrt{6}}\left[\begin{array}{r}
-1 \\
-2 \\
1
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)}_{\vec{Z}_{1 \epsilon}}=\mathrm{R} \underbrace{\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right) \times\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)}_{Z_{1 \delta}})
\end{gathered}
$$

The rotation matrix R can be computed using [1, Equation 7.134]:

$$
\begin{gathered}
\mathrm{R}=\left[\begin{array}{lll}
\vec{Z}_{1 \epsilon} & \vec{Z}_{2 \epsilon} & \vec{Z}_{3 \epsilon}
\end{array}\right]\left[\begin{array}{lll}
\vec{Z}_{1 \delta} & \vec{Z}_{2 \delta} & \vec{Z}_{3 \delta}
\end{array}\right]^{-1}= \\
=\left[\begin{array}{ccc}
\frac{3 \sqrt{2}-2 \sqrt{3}-\sqrt{6}}{\frac{\sqrt{3}-\sqrt{6}}{3}} & -\frac{2 \sqrt{3}+3 \sqrt{2}}{6} & -\frac{\sqrt{6}+3 \sqrt{2}}{6} \\
\frac{3 \sqrt{2}+2 \sqrt{3}+\sqrt{6}}{6} & \frac{2 \sqrt{3}-3 \sqrt{2}}{6} & \frac{\sqrt{6}-3 \sqrt{2}}{3}
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & 0 \\
1 & 1 & -1 \\
1 & 0 & 1
\end{array}\right]^{-1}= \\
=\left[\begin{array}{ccc}
\frac{3 \sqrt{2}-2 \sqrt{3}-\sqrt{6}}{6} & -\frac{2 \sqrt{3}+3 \sqrt{2}}{6} & -\frac{\sqrt{6}+3 \sqrt{2}}{6} \\
\frac{\sqrt{3}-\sqrt{6}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} \\
\frac{3 \sqrt{2}+2 \sqrt{3}+\sqrt{6}}{6} & \frac{2 \sqrt{3}-3 \sqrt{2}}{6} & \frac{\sqrt{6}-3 \sqrt{2}}{6}
\end{array}\right] \frac{1}{3}\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]=\left[\begin{array}{rrr}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{6} \\
0 & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6}
\end{array}\right]
\end{gathered}
$$

The camera projection center \vec{C}_{δ} can be computed using [1, Equation 7.135]:

$$
\vec{C}_{\delta}=\vec{X}_{1 \delta}-\mathrm{R}^{\top} \eta_{1} \frac{\vec{x}_{1 \gamma}}{\left\|\vec{x}_{1 \gamma}\right\|}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{rrr}
\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\
-\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\
-\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6}
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{r}
\sqrt{2} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

References

[1] Tomas Pajdla, Elements of geometry for computer vision, https://cw.fel.cvut.cz/wiki/_media/ courses/gvg/pajdla-gvg-lecture-2021.pdf.

