GVG Lab-04 Solution

Task 1. Create companion matrix M_f for polynomial $f = 2x^3 - 6x^2 + 11x - 6$.

Solution: The companion matrix M_f for a general univariate polynomial $f = a_n x^n + \cdots + a_1 x + a_0$, $a_n \neq 0$ is defined to be

$$M_f = \begin{bmatrix} 0 & \cdots & 0 & -\frac{a_0}{a_n} \\ 1 & \cdots & 0 & -\frac{a_1}{a_n} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & -\frac{a_{n-1}}{a_n} \end{bmatrix}$$

It can be verified by direct computation that $\det(xI - M_f) = \frac{1}{a_n} \cdot f$, which means that the roots of f can be obtained as the eigenvalues of M_f .

For the polynomial given in the task the companion matrix equals

$$M_f = \begin{bmatrix} 0 & 0 & 3\\ 1 & 0 & -\frac{11}{2}\\ 0 & 1 & 3 \end{bmatrix}$$

Task 2. Find a basis $\alpha = (\vec{a}_1, \vec{a}_2, \vec{a}_3)$ such that vector \vec{x} , which is obtained as $\vec{u} = 2\vec{b_1} + 3\vec{b_2}$ as shown in the following figure, would have coordinates in α equal to $[2,3,2]^{\top}$. Write down the coordinates of the vectors of α in basis $\beta = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$.

Solution: We can see that

$$\vec{x} = \vec{u} + \vec{b}_3$$

By the task, we need to find linearly independent free vectors \vec{a}_1, \vec{a}_2 and \vec{a}_3 such that

$$2\vec{a}_1 + 3\vec{a}_2 + 2\vec{a}_3 = 2\vec{b}_1 + 3\vec{b}_2 + \vec{b}_3$$

There are, obviously, infinitely many choices for $\vec{a}_1, \vec{a}_2, \vec{a}_3$, since \vec{a}_1 and \vec{a}_2 can be chosen to be arbitrary linearly independent vectors and \vec{a}_3 is defined then by

$$\vec{a}_3 = \frac{1}{2} \left(2\vec{b}_1 + 3\vec{b}_2 + \vec{b}_3 - 2\vec{a}_1 - 3\vec{a}_2 \right)$$

The simplest choice is to take

$$\vec{a}_1 = \vec{b}_1, \vec{a}_2 = \vec{b}_2, \vec{a}_3 = \frac{1}{2}\vec{b}_3.$$

The coordinates of the vectors of α in basis β are

$$\vec{a}_{1\beta} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \vec{a}_{2\beta} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad \vec{a}_{3\beta} = \begin{bmatrix} 0\\0\\\frac{1}{2} \end{bmatrix}$$

r	_	-	٦
ı			1
Ł			┛

Task 3. Let us have a camera with camera projection matrix

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Write the cosine of the angle between rays passing through image points $[0,0]^{\top}$ a $[1,1]^{\top}$.

Figure 1: Two projection rays passing through the image points \boldsymbol{x}_1 and \boldsymbol{x}_2

Solution: We first compute the camera calibration matrix of the given camera projection matrix. For this we decompose the left 3×3 block B of P:

$$k_{23} = \mathbf{b}_{2}^{\mathsf{T}} \mathbf{b}_{3} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 1,$$

$$k_{13} = \mathbf{b}_{1}^{\mathsf{T}} \mathbf{b}_{3} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = 1,$$

$$k_{22}^{2} + 1^{2} = \mathbf{b}_{2}^{\mathsf{T}} \mathbf{b}_{2} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = 2 \Rightarrow k_{22} = 1,$$

$$k_{12} \cdot 1 + 1 \cdot 1 = \mathbf{b}_{1}^{\mathsf{T}} \mathbf{b}_{2} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = 1 \Rightarrow k_{12} = 0,$$

$$k_{11}^{2} + 0^{2} + 1^{2} = \mathbf{b}_{1}^{\mathsf{T}} \mathbf{b}_{1} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 2 \Rightarrow k_{11} = 1,$$

$$k_{12} \cdot 1 + 1 \cdot 1 = \mathbf{b}_{1}^{\mathsf{T}} \mathbf{b}_{2} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = 1 \Rightarrow k_{12} = 0,$$

$$k_{11}^{2} + 0^{2} + 1^{2} = \mathbf{b}_{1}^{\mathsf{T}} \mathbf{b}_{1} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 2 \Rightarrow k_{11} = 1.$$

$$K = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Hence

$$\mathbf{K} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Remark. If the left 3×3 block B of P is an upper triangular matrix, then K = B or $K = BR_x$ or $K = BR_y$ or $K = BR_z$, where R_a is a rotation about axis a by 180° . In other words, the only upper triangular rotations are I, R_x , R_y , R_z . To prove this notice that B = KR and since K must also be upper triangular, then so is R. This is because $R = K^{-1}B$ and the inverse of an upper triangular matrix is upper triangular. The only upper triangular rotations are I, R_x , R_y , R_z . To show this notice that the last row must be equal to $\begin{bmatrix} 0 & 0 & \pm 1 \end{bmatrix}$ since the norms of rows must be equal to 1. Further, the first column must be equal to $\begin{bmatrix} \pm 1 & 0 & 0 \end{bmatrix}^{\top}$ for the same reason. Since $r_{11} = 1$, then $r_{12} = r_{13} = 0$. Since $r_{33} = 1$, then $r_{13} = r_{23} = 0$. Since $r_{21} = r_{23} = 0$ and det $R = r_{11}r_{22}r_{33} = 1$, then $r_{22} = \frac{1}{r_{11}r_{33}}$. Thus, there are 4 possibilities how to choose signs of r_{11} and r_{33} which gives rise to 4 rotations R = I, R_x , R_y , R_z .

The direction vectors of the rays passing through the given image points are given by

$$\vec{x}_{1\beta} = \begin{bmatrix} \vec{u}_{1\alpha} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \vec{x}_{2\beta} = \begin{bmatrix} \vec{u}_{2\alpha} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

To obtain the angle between the direction vectors by evaluating the scalar product of the vectors, we need to pass to an orthogonal basis (e.g. γ):

$$\vec{x}_{1\gamma} = \mathbf{K}^{-1}\vec{x}_{1\beta} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{x}_{2\gamma} = \mathbf{K}^{-1}\vec{x}_{2\beta} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$\cos \angle (\vec{x}_1, \vec{x}_2) = \frac{\vec{x}_{1\gamma}^{\top}\vec{x}_{2\gamma}}{\|\vec{x}_{1\gamma}\| \|\vec{x}_{2\gamma}\|} = \frac{\begin{bmatrix} -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}}{\sqrt{3} \cdot 1} = \frac{1}{\sqrt{3}}$$

Remark. Actually, we could use another orthogonal basis, namely κ (see [1, Figure 7.2 (d)]). The transition matrix $T_{\beta \to \kappa}$ equals $(KR)^{-1} = P_{1:3,1:3}^{-1}$. However, since $P_{1:3,1:3} = K$ in this task, then

$$\vec{x}_{1\kappa} = \vec{x}_{1\gamma}, \quad \vec{x}_{2\kappa} = \vec{x}_{2\gamma}$$

 $\cos \angle (\vec{x}_1, \vec{x}_2) = \frac{\vec{x}_{1\kappa}^\top \vec{x}_{2\kappa}}{\|\vec{x}_{1\kappa}\| \|\vec{x}_{2\kappa}\|} = \frac{1}{\sqrt{3}}$

Hence computing $\cos \angle (\vec{x}_1, \vec{x}_2)$ using this method requires less computations.

Task 4 (P3P Problem). Compute the calibrated camera pose (R, \vec{C}_{δ}) of the camera with camera calibration matrix

$$\mathbf{K} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

if you know that 3 world points

$$\vec{X}_{1\delta} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \vec{X}_{2\delta} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad \vec{X}_{3\delta} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

project to the following image points

$$\vec{u}_{1\alpha} = \begin{bmatrix} 3\\ 3 \end{bmatrix}, \quad \vec{u}_{2\alpha} = \begin{bmatrix} 1\\ 4 \end{bmatrix}, \quad \vec{u}_{3\alpha} = \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

respectively.

Figure 2: P3P Problem

Solution: We first obtain the coordinates of the vectors representing the image points in the camera coordinate system (C, β) :

$$\vec{x}_{1\beta} = \begin{bmatrix} \vec{u}_{1\alpha} \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}, \quad \vec{x}_{2\beta} = \begin{bmatrix} \vec{u}_{2\alpha} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}, \quad \vec{x}_{3\beta} = \begin{bmatrix} \vec{u}_{3\alpha} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

To obtain the angle between the direction vectors by evaluating the scalar product of the vectors, we need to pass to an orthogonal basis (e.g. γ):

$$\vec{x}_{1\gamma} = \mathbf{K}^{-1}\vec{x}_{1\beta} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\vec{x}_{2\gamma} = \mathbf{K}^{-1}\vec{x}_{2\beta} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
$$\vec{x}_{3\gamma} = \mathbf{K}^{-1}\vec{x}_{3\beta} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}$$

The cosines of the angles between the rays are then given by

$$c_{12} = \cos \angle (\vec{x}_1, \vec{x}_2) = \frac{\vec{x}_{1\gamma}^\top \vec{x}_{2\gamma}}{\|\vec{x}_{1\gamma}\| \|\vec{x}_{2\gamma}\|} = \frac{\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}}{\sqrt{2} \cdot \sqrt{3}} = 0$$
$$c_{23} = \cos \angle (\vec{x}_2, \vec{x}_3) = \frac{\vec{x}_{2\gamma}^\top \vec{x}_{3\gamma}}{\|\vec{x}_{2\gamma}\| \|\vec{x}_{3\gamma}\|} = \frac{\begin{bmatrix} -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}}{\sqrt{3} \cdot \sqrt{6}} = 0$$
$$c_{31} = \cos \angle (\vec{x}_3, \vec{x}_1) = \frac{\vec{x}_{3\gamma}^\top \vec{x}_{1\gamma}}{\|\vec{x}_{3\gamma}\| \|\vec{x}_{1\gamma}\|} = \frac{\begin{bmatrix} -1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}}{\sqrt{6} \cdot \sqrt{2}} = 0$$

If we denote by η_1, η_2, η_3 the lengths of vectors $\overrightarrow{CX_1}, \overrightarrow{CX_2}, \overrightarrow{CX_3}$ in the world units and by d_{12}, d_{23}, d_{31} the lengths of vectors $\overrightarrow{X_1X_2}, \overrightarrow{X_2X_3}, \overrightarrow{X_3X_1}$ in the world units, then by looking at the triangles $\triangle CX_1X_2, \triangle CX_2X_3, \triangle CX_3X_1$ we can write the equations coming from the cosine rule ([1, Equations 7.60-7.62]):

$$d_{12}^2 = \eta_1^2 + \eta_2^2 \tag{1}$$

$$d_{23}^2 = \eta_2^2 + \eta_3^2 \tag{2}$$

$$d_{31}^2 = \eta_3^2 + \eta_1^2 \tag{3}$$

We have used the fact that all the cosines c_{12}, c_{23}, c_{31} are zero. We compute the distances between the world points:

$$d_{12} = \left\| \vec{X}_{1\delta} - \vec{X}_{2\delta} \right\| = \left\| \begin{bmatrix} 1\\0\\0 \end{bmatrix} - \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\| = \sqrt{2} \Rightarrow d_{12}^2 = 2$$
$$d_{23} = \left\| \vec{X}_{2\delta} - \vec{X}_{3\delta} \right\| = \left\| \begin{bmatrix} 0\\1\\0 \end{bmatrix} - \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\| = \left\| \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\| = \sqrt{2} \Rightarrow d_{23}^2 = 2$$
$$d_{31} = \left\| \vec{X}_{3\delta} - \vec{X}_{1\delta} \right\| = \left\| \begin{bmatrix} 0\\0\\1 \end{bmatrix} - \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\| = \left\| \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\| = \sqrt{2} \Rightarrow d_{31}^2 = 2$$

We can rewrite Equations (1), (2), (3) in a matrix form:

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \eta_1^2 \\ \eta_2^2 \\ \eta_3^2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$
$$\begin{bmatrix} \eta_1^2 \\ \eta_2^2 \\ \eta_3^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0.5 & -0.5 & 0.5 \\ 0.5 & 0.5 & -0.5 \\ -0.5 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Taking into account that the depths η_1, η_2, η_3 must be positive, we get

$$\eta_1 = 1, \quad \eta_2 = 1, \quad \eta_3 = 1.$$

Finally, we compute the camera pose $(\mathbf{R}, \vec{C}_{\delta})$ using [1, Equations 7.122-7.124]:

$$\begin{split} \eta_1 \frac{\vec{x}_{1\gamma}}{\|\vec{x}_{1\gamma}\|} &= \mathtt{R}(\vec{X}_{1\delta} - \vec{C}_{\delta}) \\ \eta_2 \frac{\vec{x}_{2\gamma}}{\|\vec{x}_{2\gamma}\|} &= \mathtt{R}(\vec{X}_{2\delta} - \vec{C}_{\delta}) \\ \eta_3 \frac{\vec{x}_{3\gamma}}{\|\vec{x}_{3\gamma}\|} &= \mathtt{R}(\vec{X}_{3\delta} - \vec{C}_{\delta}) \end{split}$$

Eliminating \vec{C}_{δ} and using the properties of the rotation matrix we get [1, Equations 7.125, 7.126, 7.129]:

The rotation matrix **R** can be computed using [1, Equation 7.134]:

$$\begin{split} \mathbf{R} &= \begin{bmatrix} \vec{Z}_{1\epsilon} & \vec{Z}_{2\epsilon} & \vec{Z}_{3\epsilon} \end{bmatrix} \begin{bmatrix} \vec{Z}_{1\delta} & \vec{Z}_{2\delta} & \vec{Z}_{3\delta} \end{bmatrix}^{-1} = \\ &= \begin{bmatrix} \frac{3\sqrt{2} - 2\sqrt{3} - \sqrt{6}}{6} & -\frac{2\sqrt{3} + 3\sqrt{2}}{6} & -\frac{\sqrt{6} + 3\sqrt{2}}{6} \\ \frac{\sqrt{3} - \sqrt{6}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} \\ \frac{3\sqrt{2} + 2\sqrt{3} + \sqrt{6}}{6} & \frac{2\sqrt{3} - 3\sqrt{2}}{6} & \frac{\sqrt{6} - 3\sqrt{2}}{6} \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}^{-1} = \\ &= \begin{bmatrix} \frac{3\sqrt{2} - 2\sqrt{3} - \sqrt{6}}{6} & -\frac{2\sqrt{3} + 3\sqrt{2}}{6} & -\frac{\sqrt{6} + 3\sqrt{2}}{6} \\ \frac{\sqrt{3} - \sqrt{6}}{3} & \frac{\sqrt{3}}{6} & -\frac{\sqrt{6} + 3\sqrt{2}}{6} \\ \frac{\sqrt{3} - \sqrt{6}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{3} - \sqrt{6}}{3} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{3} \\ \frac{3\sqrt{2} + 2\sqrt{3} + \sqrt{6}}{6} & \frac{2\sqrt{3} - 3\sqrt{2}}{6} & \frac{\sqrt{6} - 3\sqrt{2}}{6} \\ \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \\ \end{bmatrix} \end{split}$$

The camera projection center \vec{C}_{δ} can be computed using [1, Equation 7.135]:

$$\vec{C}_{\delta} = \vec{X}_{1\delta} - \mathbf{R}^{\top} \eta_1 \frac{\vec{x}_{1\gamma}}{\|\vec{x}_{1\gamma}\|} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} - \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\ -\frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3}\\ -\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2}\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}.$$

References

[1] Tomas Pajdla, *Elements of geometry for computer vision*, https://cw.fel.cvut.cz/wiki/_media/ courses/gvg/pajdla-gvg-lecture-2021.pdf.