GVG Lab-05 Solution

Task 1. The following picture shows a coordinate system $\sigma=(O, \beta)$ and a basis $\beta=\left(\vec{b}_{1}, \vec{b}_{2}\right)$.

1. Find a coordinate system $\sigma^{\prime}=\left(O^{\prime}, \beta^{\prime}\right)$, $\beta^{\prime}=\left(\vec{b}_{1}^{\prime}, \vec{b}_{2}^{\prime}\right)$, whose basis vector \vec{b}_{1}^{\prime} has in basis β coordinates

$$
\vec{b}_{1 \beta}^{\prime}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

and its origin O^{\prime} is in the coordinate system σ described by vector

$$
\vec{O}_{\beta}^{\prime}=\left[\begin{array}{r}
1 / 2 \\
1
\end{array}\right]
$$

and there exists point X described by vector \vec{X} in σ and vector \vec{X}^{\prime} in σ^{\prime} with coordinates

$$
\vec{X}_{\beta}=\left[\begin{array}{r}
3 / 2 \\
1
\end{array}\right], \quad \vec{X}_{\beta^{\prime}}^{\prime}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and draw it on the picture.
2. Write the coordinates of the point O in coordinate system σ^{\prime}.

Solution: By applying the same ideas as in the solution of Task 5 from Test- α we can write

$$
\vec{X}=\vec{X}^{\prime}+\vec{O}^{\prime}
$$

After passing to the coordinates of the above vectors in basis β we get

$$
\begin{gathered}
\vec{X}_{\beta}=\vec{X}_{\beta}^{\prime}+\vec{O}_{\beta}^{\prime} \\
\vec{X}_{\beta}=\mathrm{A}_{\beta^{\prime} \rightarrow \beta} \vec{X}_{\beta^{\prime}}^{\prime}+\vec{O}_{\beta}^{\prime} \\
\vec{X}_{\beta}=\left[\begin{array}{ll}
\vec{b}_{1 \beta}^{\prime} & \vec{b}_{2 \beta}^{\prime}
\end{array}\right] \vec{X}_{\beta^{\prime}}^{\prime}+\vec{O}_{\beta}^{\prime} \\
{\left[\begin{array}{r}
3 / 2 \\
1
\end{array}\right]=\left[\begin{array}{rr}
1 & a \\
-1 & b
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{r}
1 / 2 \\
1
\end{array}\right]}
\end{gathered}
$$

Rewriting the above matricial equation in terms of individual equations we obtain

$$
\frac{3}{2}=1+a+\frac{1}{2}, \quad 1=-1+b+1
$$

and hence

$$
a=0, \quad b=1
$$

which means that

$$
\vec{b}_{2 \beta}^{\prime}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

In the picture the desired coordinate system σ^{\prime} looks as follows:

Task 2. Find coordinates of the image point which is the projection of point $[1,1,1]^{\top}$ by the camera with the following camera projection matrix

$$
\mathrm{P}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Solution: See the methodology in the solution to Lab 02, Task 1.
Answer: $\quad[u, v]=\left[\begin{array}{ll}\frac{1}{2} & 1\end{array}\right]^{\top}$.
Task 3. Find the camera calibration matrix K , rotation R , and the projection center \vec{C}_{δ} of a camera with the camera projection matrix

$$
\mathrm{P}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Solution: See the methodology in the solution to Lab 03, Task 3. The only difference is that in this task $K R=P_{1: 3,1: 3}$.

Answer:

$$
\mathrm{K}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad \mathrm{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad \vec{C}_{\delta}=\left[\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right]
$$

Task 4. Denote the image coordinates by $[u, v]^{\top}$. Write down coordinates of all points in the three-dimensional space that projects on the line $v=0$ by a camera with the following camera projection matrix

$$
P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Solution: See the solution to Lab 02, Task 4.

