
GVG’2022 Lab-08 Solution
Task 1. Let us have two lines in the image l1 and l2 given by:

l1 : u = 1, l2 : v = 1.

Find their intersection in A2, if exists (using techniques of projective geometry).

l1

C

~b3

~b2

~b1
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~l1

l2

~l2

Solution: Obviously, it is not necessary to use the techniques of projective geometry (the cross product rule
for the intersection of 2 lines): we could simply setup the system of linear equations{

1 · u+ 0 · v = 1

0 · u+ 1 · v = 1
⇐⇒

[
1 0
0 1

]
︸ ︷︷ ︸

M

[
u
v

]
=

[
1
1

]
︸︷︷︸
b

and solve it by M−1b. However, the above system will not have any solutions if the lines are parallel and not
identical (b will not belong to rng M).

We can also rewrite the above system as

[
1 0 −1
0 1 −1

]
︸ ︷︷ ︸

A

uv
1

 =

[
0
0

]

and use Gaussian elimination to solve it. If the kernel of A has the generator with the last coordinate zero, then
the system has no solutions.

Another way to find the kernel of A is to compute the cross product of the 2 rows of A. The result may be
interpreted as the intersection of l1 and l2 in P2, since now 3 × 1 vectors of numbers with the last coordinate
zero represent points at infinity of P2. (We see that it is easier to work in P2 rather than in A2 since we don’t
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need to distinguish the 2 cases of parallel and not parallel lines.) The homogeneous representatives of l1 and l2
in P2 are:

l1 =

 1
0
−1

 , l2 =

 0
1
−1


Their cross product is

x = l1 × l2 =

 1
0
−1

×
 0

1
−1

 =

 1
1
1


We see that the last coordinate is nonzero, which means that l1 and l2 intersect in A2. (If it was zero, then
they would be parallel and wouldn’t intersect in A2, but in P2.) To find the point of intersection in A2 we need

to find the representative of [x] with the last coordinate 1 and take the first 2 coordinates, which are
[
1 1

]>
.
�

Task 2. Let us have two image points x1 and x2 defined by

~u1α =

[
1
1

]
, ~u2α =

[
2
1

]
Find the line in the image (in the form au + bv + c = 0) passing through them (using techniques of projective
geometry).

l

x2

x1

C

~b3

~b2
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~x2

~x1

~l

Solution: Again, it is not necessary to use techniques of projective geometry (the cross product rule for the
line passing through 2 points): we could simply setup the system of linear equations{

a · 1 + b · 1 + c = 0

a · 2 + b · 1 + c = 0
⇐⇒

[
1 1 1
2 1 1

]
︸ ︷︷ ︸

M

ab
c

 =

[
0
0

]
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and solve it by Gaussian elimination of M.
The homogeneous representatives of x1 and x2 are

x1 =

1
1
1

 , x2 =

2
1
1


Their cross product is

l = x1 × x2 =

1
1
1

×
2

1
1

 =

 0
1
−1


Passing to affine representation of the line given by l we get

l : 0 · u+ 1 · v − 1 = 0⇒ l : v = 1.

The point at infinity of P2 represented by
[
1 0 0

]>
associated to l doesn’t belong to l, but to its projective

closure l. �

Task 3. Let us have two lines L1 and L2 in A3 given by:

L1 : ~X1δ =

1
0
0

 , ~X2δ =

1
0
1

 ; L2 : ~X3δ =

1
1
0

 , ~X4δ =

1
1
1


Find the intersection of L1 and L2 (if exists) in the projective space P3.

X1

X3 X4

X2

P

d

Solution: While every two lines in P2 intersect, this is not the case in P3. Obviously, two lines L1 and L2

defined by 4 points from A3 intersect in P3 if and only if these lines lie in a plane. Algebraically, this condition
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can be expressed as

det



~X>1δ 1
~X>2δ 1
~X>3δ 1
~X>4δ 1


 = 0.

Notice that the determinant of that matrix is zero if and only if it has a nontrivial kernel, whose generator (or
generators if the 4 points are degenerate) defines the coefficients of the plane. For this task we can see that

det




1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1


 = 0

since the first and the last column are equal (meaning the 4 columns are linearly dependent). This means
that the lines L1 and L2 intersect in P3 (however, they may not intersect in A3, which happens when they are
parallel).

In order to find the intersection of L1 and L2 in P3 we need to construct a 3×4 matrix, whose rows represent
3 different planes: one passes through L1, the second – through L2, and the third contains them both. They
can be constructed as follows:

~X1δ × ~X2δ =

1
0
0

×
1

0
1

 =

 0
−1

0

⇒ σ1 : 0 · x+ (−1) · y + 0 · z + 0 = 0⇒ σ1 =


0
−1

0
0



~X3δ × ~X4δ =

1
1
0

×
1

1
1

 =

 1
−1

0

⇒ σ2 : 1 · x+ (−1) · y + 0 · z + 0 = 0⇒ σ2 =


1
−1

0
0



ker




1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1


 =

〈
−1

0
0
1


〉
⇒ σ3 =


−1

0
0
1


To find the intersection of L1 and L2 in P3 we need to find the kernel of the following matrix:σ>1σ>2

σ>3

 =

 0 −1 0 0
1 −1 0 0
−1 0 0 1

 ∼
 1 −1 0 0
−1 0 0 1

0 −1 0 0

 ∼
 1 −1 0 0

0 −1 0 1
0 −1 0 0

 ∼
 1 −1 0 0

0 1 0 −1
0 0 0 1



ker

σ>1σ>2
σ>3

 =

〈
0
0
1
0


〉
⇒ P = L1 ∩ L2 =




0
0
1
0


 ∈ P3

Notice that the intersection of the projective closures of L1 and L2 is a point at infinity of P3 since L1 and L2

are parallel. Also notice that the first 3 coordinates
[
0 0 1

]>
of P define the direction vector d of the given

lines. �

Task 4. Let the camera be given by the following camera projection matrix

P =

1 0 0 0
0 1 0 0
0 0 1 0


Let the rectangle in space be defined by the following 4 points:

~X1δ =

 1
1
1

 , ~X2δ =

 1
−1

1

 , ~X3δ =

 1
−1

2

 , ~X4δ =

 1
1
2


Find the horizon of the plane defined by the rectangle.
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Solution: In order to draw a picture what is happening in this task we need to take one of the cameras which
has the given camera projection matrix.

Remark. Since the set of camera projection matrices is in bijective correspondence with the set of triples
(K, R, ~Cδ) and every camera is uniquely defined by a 4-tuple (f, K, R, ~Cδ), then it is obvious that for fixed K, R and
~Cδ the set of cameras {

(f, K, R, ~Cδ)
∣∣∣ f ∈ R+

}
have the same camera projection matrix. Out of those we take the one with f = 1 to create a picture for this
task (see Figure 1). Since P1:3,1:3 = I and P1:3,4 = 0 results into K = R = I and ~Cδ = 0, then

O = C, Tδ→γ =
1

f
R = I, Tγ→β = K = I,

which means that (O, δ) = (C, γ) = (C, β).

v1

v2

h

l1

l2

k1

k2

X1X2

X3 X4

~d2

~d1

~d3 ≡ ~b3

~b2

~b1

O ≡ C

image plane

Figure 1: Camera observes the square �X1X2X3X4

We first project the world points to the camera:

x1 = P

[
~X1δ

1

]
=

1
1
1

 , x2 = P

[
~X2δ

1

]
=

 1
−1

1

 , x3 = P

[
~X3δ

1

]
=

 1
−1

2

 , x4 = P

[
~X4δ

1

]
=

 1
1
2

 .
There is no need to find the image points ~uiα, i = 1, . . . , 4 (by dividing xi by the last coordinate), since it is
easier to work in homogeneous coordinates to work with lines in P2 and their intersections. In order to find
the horizon (the projection of a line at infinity of the plane τ defined by �X1X2X3X4) it is sufficient to find
two vanishing points of two pairs of parallel lines from τ . Those 2 pairs will be defined by (X2X3, X1X4) and
(X1X2, X3X4).

5



Two find the representatives of the images k1 and l1 of the first pair we apply the cross product rule to the
homogeneous representatives of the projected points to the camera:

k1 = x1 × x4 =

 1
1
1

×
 1

1
2

 =

 1
−1

0

 , l1 = x2 × x3 =

 1
−1

1

×
 1
−1

2

 =

−1
−1

0


The vanishing point associated to the pair of world lines (X2X3, X1X4) is then the intersection of k1 and l1. In
homogeneous coordinates we have:

v1 = k1 × l1 =

 1
−1

0

×
−1
−1

0

 =

 0
0
−2


Since the last coordinate of v1 is nonzero, the we can pass to the affine coordinates (by dividing by the last

coordinate and taking the first two) and see that v1(o,α)
=
[
0 0

]>
.

Similarly, the representatives of the images k2 and l2 of the second pair of world lines (X1X2, X3X4) are:

k2 = x1 × x2 =

 1
1
1

×
 1
−1

1

 =

 2
0
−2

 , l2 = x3 × x4 =

 1
−1

2

×
 1

1
2

 =

−4
0
2


The vanishing point associated to the pair of world lines (X1X2, X3X4) is then the intersection of k2 and l2 (in
P2). In homogeneous coordinates we have:

v2 = k2 × l2 =

 2
0
−2

×
−4

0
2

 =

 0
4
0


Since the last coordinate of v2 is zero, then v2 is a point at infinity of P2. (This is logical since the world lines
X1X2 and X3X4 are parallel to the image plane of the camera).

To find the horizon we need to find the line passing through the points v1 (visible in the image) and v2 (not
visible in the image). We do this again by the cross product:

h = v1 × v2 =

 0
0
−2

×
 0

4
0

 =

 8
0
0

 ∼
 1

0
0


Passing to affine coordinates, we see that

h = {(u, v) ∈ R2 | 1 · u+ 0 · v + 0 = 0}

is a line u = 0 in the image. Notice that the horizon of τ is (always) the intersection of the plane parallel to τ
and passing through the camera center C and the image plane of the camera. �
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