GVG'2022 Lab-08 Solution

Task 1. Let us have two lines in the image l_1 and l_2 given by:

$$l_1: u = 1, \quad l_2: v = 1.$$

Find their intersection in \mathbb{A}^2 , if exists (using techniques of projective geometry).

Solution: Obviously, it is not necessary to use the techniques of projective geometry (the cross product rule for the intersection of 2 lines): we could simply setup the system of linear equations

$$\begin{cases} 1 \cdot u + 0 \cdot v = 1\\ 0 \cdot u + 1 \cdot v = 1 \end{cases} \iff \underbrace{\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}}_{\mathsf{M}} \begin{bmatrix} u\\ v \end{bmatrix} = \underbrace{\begin{bmatrix} 1\\ 1 \end{bmatrix}}_{\mathsf{b}}$$

and solve it by $M^{-1}\mathbf{b}$. However, the above system will not have any solutions if the lines are parallel and not identical (**b** will not belong to rng M).

We can also rewrite the above system as

$$\underbrace{\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and use Gaussian elimination to solve it. If the kernel of A has the generator with the last coordinate zero, then the system has no solutions.

Another way to find the kernel of A is to compute the cross product of the 2 rows of A. The result may be interpreted as the intersection of l_1 and l_2 in \mathbb{P}^2 , since now 3×1 vectors of numbers with the last coordinate zero represent points at infinity of \mathbb{P}^2 . (We see that it is easier to work in \mathbb{P}^2 rather than in \mathbb{A}^2 since we don't

need to distinguish the 2 cases of parallel and not parallel lines.) The homogeneous representatives of l_1 and l_2 in \mathbb{P}^2 are:

$$\mathbf{l}_1 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \quad \mathbf{l}_2 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$$

Their cross product is

$$\mathbf{x} = \mathbf{l}_1 \times \mathbf{l}_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \times \begin{bmatrix} 0\\1\\-1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

We see that the last coordinate is nonzero, which means that l_1 and l_2 intersect in \mathbb{A}^2 . (If it was zero, then they would be parallel and wouldn't intersect in \mathbb{A}^2 , but in \mathbb{P}^2 .) To find the point of intersection in \mathbb{A}^2 we need to find the representative of $[\mathbf{x}]$ with the last coordinate 1 and take the first 2 coordinates, which are $\begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$.

Task 2. Let us have two image points x_1 and x_2 defined by

$$\vec{u}_{1\alpha} = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \vec{u}_{2\alpha} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

Find the line in the image (in the form au + bv + c = 0) passing through them (using techniques of projective geometry).

Solution: Again, it is not necessary to use techniques of projective geometry (the cross product rule for the line passing through 2 points): we could simply setup the system of linear equations

$$\begin{cases} a \cdot 1 + b \cdot 1 + c = 0\\ a \cdot 2 + b \cdot 1 + c = 0 \end{cases} \iff \underbrace{\begin{bmatrix} 1 & 1 & 1\\ 2 & 1 & 1 \end{bmatrix}}_{\mathsf{M}} \begin{bmatrix} a\\ b\\ c \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

and solve it by Gaussian elimination of ${\tt M}.$

The homogeneous representatives of x_1 and x_2 are

$$\mathbf{x}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$$

Their cross product is

$$\mathbf{l} = \mathbf{x}_1 \times \mathbf{x}_2 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \times \begin{bmatrix} 2\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$$

Passing to affine representation of the line given by \mathbf{l} we get

$$l: 0 \cdot u + 1 \cdot v - 1 = 0 \Rightarrow l: v = 1.$$

The point at infinity of \mathbb{P}^2 represented by $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^\top$ associated to l doesn't belong to l, but to its projective closure \overline{l} .

Task 3. Let us have two lines L_1 and L_2 in \mathbb{A}^3 given by:

$$L_1: \vec{X}_{1\delta} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \vec{X}_{2\delta} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}; \quad L_2: \vec{X}_{3\delta} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \vec{X}_{4\delta} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

Find the intersection of L_1 and L_2 (if exists) in the projective space \mathbb{P}^3 .

- -

Solution: While every two lines in \mathbb{P}^2 intersect, this is not the case in \mathbb{P}^3 . Obviously, two lines L_1 and L_2 defined by 4 points from \mathbb{A}^3 intersect in \mathbb{P}^3 if and only if these lines lie in a plane. Algebraically, this condition

can be expressed as

$$\det \begin{pmatrix} \begin{bmatrix} \vec{X}_{1\delta}^\top & 1\\ \vec{X}_{2\delta}^\top & 1\\ \vec{X}_{3\delta}^\top & 1\\ \vec{X}_{4\delta}^\top & 1 \end{bmatrix} = 0.$$

Notice that the determinant of that matrix is zero if and only if it has a nontrivial kernel, whose generator (or generators if the 4 points are degenerate) defines the coefficients of the plane. For this task we can see that

$$\det\left(\begin{bmatrix}1 & 0 & 0 & 1\\1 & 0 & 1 & 1\\1 & 1 & 0 & 1\\1 & 1 & 1 & 1\end{bmatrix}\right) = 0$$

since the first and the last column are equal (meaning the 4 columns are linearly dependent). This means that the lines L_1 and L_2 intersect in \mathbb{P}^3 (however, they may not intersect in \mathbb{A}^3 , which happens when they are parallel).

In order to find the intersection of L_1 and L_2 in \mathbb{P}^3 we need to construct a 3×4 matrix, whose rows represent 3 different planes: one passes through L_1 , the second – through L_2 , and the third contains them both. They can be constructed as follows:

$$\vec{X}_{1\delta} \times \vec{X}_{2\delta} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \times \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\-1\\0 \end{bmatrix} \Rightarrow \sigma_1 : \ 0 \cdot x + (-1) \cdot y + 0 \cdot z + 0 = 0 \Rightarrow \sigma_1 = \begin{bmatrix} 0\\-1\\0\\0 \end{bmatrix}$$
$$\vec{X}_{3\delta} \times \vec{X}_{4\delta} = \begin{bmatrix} 1\\1\\0 \end{bmatrix} \times \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \Rightarrow \sigma_2 : \ 1 \cdot x + (-1) \cdot y + 0 \cdot z + 0 = 0 \Rightarrow \sigma_2 = \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}$$
$$\ker \left(\begin{bmatrix} 1&0&0&1\\1&1&0&1\\1&1&0&1\\1&1&1&1 \end{bmatrix} \right) = \left\langle \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} \right\rangle \Rightarrow \sigma_3 = \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix}$$

To find the intersection of L_1 and L_2 in \mathbb{P}^3 we need to find the kernel of the following matrix:

$$\begin{bmatrix} \boldsymbol{\sigma}_1^\top\\ \boldsymbol{\sigma}_2^\top\\ \boldsymbol{\sigma}_3^\top \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 0\\ 1 & -1 & 0 & 0\\ -1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 0\\ -1 & 0 & 0 & 1\\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 0\\ 0 & -1 & 0 & 1\\ 0 & -1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & 0\\ 0 & 1 & 0 & -1\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\ker \left(\begin{bmatrix} \boldsymbol{\sigma}_1^\top\\ \boldsymbol{\sigma}_2^\top\\ \boldsymbol{\sigma}_3^\top \end{bmatrix} \right) = \left\langle \begin{bmatrix} 0\\ 0\\ 1\\ 0 \end{bmatrix} \right\rangle \Rightarrow P = \overline{L_1} \cap \overline{L_2} = \begin{bmatrix} \begin{bmatrix} 0\\ 0\\ 1\\ 0 \end{bmatrix} \\ \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} \right) \in \mathbb{P}^3$$

Notice that the intersection of the projective closures of L_1 and L_2 is a point at infinity of \mathbb{P}^3 since L_1 and L_2 are parallel. Also notice that the first 3 coordinates $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^\top$ of P define the direction vector \mathbf{d} of the given lines.

Task 4. Let the camera be given by the following camera projection matrix

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Let the rectangle in space be defined by the following 4 points:

$$\vec{X}_{1\delta} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \vec{X}_{2\delta} = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \vec{X}_{3\delta} = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \vec{X}_{4\delta} = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$$

Find the horizon of the plane defined by the rectangle.

Solution: In order to draw a picture what is happening in this task we need to take one of the cameras which has the given camera projection matrix.

Remark. Since the set of camera projection matrices is in bijective correspondence with the set of triples (K, R, \vec{C}_{δ}) and every camera is uniquely defined by a 4-tuple $(f, K, R, \vec{C}_{\delta})$, then it is obvious that for fixed K, R and \vec{C}_{δ} the set of cameras

$$\left\{ (f, \mathbf{K}, \mathbf{R}, \vec{C}_{\delta}) \; \middle| \; f \in \mathbb{R}^+ \right\}$$

have the same camera projection matrix. Out of those we take the one with f = 1 to create a picture for this task (see Figure 1). Since $P_{1:3,1:3} = I$ and $P_{1:3,4} = 0$ results into K = R = I and $\vec{C}_{\delta} = 0$, then

$$O = C, \quad \mathbf{T}_{\delta \to \gamma} = \frac{1}{f} \mathbf{R} = \mathbf{I}, \quad \mathbf{T}_{\gamma \to \beta} = \mathbf{K} = \mathbf{I},$$

which means that $(O, \delta) = (C, \gamma) = (C, \beta)$.

Figure 1: Camera observes the square $\Box X_1 X_2 X_3 X_4$

We first project the world points to the camera:

$$\mathbf{x}_1 = \mathbf{P}\begin{bmatrix}\vec{X}_{1\delta}\\1\end{bmatrix} = \begin{bmatrix}1\\1\\1\end{bmatrix}, \quad \mathbf{x}_2 = \mathbf{P}\begin{bmatrix}\vec{X}_{2\delta}\\1\end{bmatrix} = \begin{bmatrix}1\\-1\\1\end{bmatrix}, \quad \mathbf{x}_3 = \mathbf{P}\begin{bmatrix}\vec{X}_{3\delta}\\1\end{bmatrix} = \begin{bmatrix}1\\-1\\2\end{bmatrix}, \quad \mathbf{x}_4 = \mathbf{P}\begin{bmatrix}\vec{X}_{4\delta}\\1\end{bmatrix} = \begin{bmatrix}1\\1\\2\end{bmatrix}.$$

There is no need to find the image points $\vec{u}_{i\alpha}$, i = 1, ..., 4 (by dividing \mathbf{x}_i by the last coordinate), since it is easier to work in homogeneous coordinates to work with lines in \mathbb{P}^2 and their intersections. In order to find the horizon (the projection of a line at infinity of the plane τ defined by $\Box X_1 X_2 X_3 X_4$) it is sufficient to find two vanishing points of two pairs of parallel lines from τ . Those 2 pairs will be defined by $(\overline{X_2 X_3}, \overline{X_1 X_4})$ and $(\overline{X_1 X_2}, \overline{X_3 X_4})$. Two find the representatives of the images k_1 and l_1 of the first pair we apply the cross product rule to the homogeneous representatives of the projected points to the camera:

$$\mathbf{k}_1 = \mathbf{x}_1 \times \mathbf{x}_4 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \times \begin{bmatrix} 1\\1\\2\\2 \end{bmatrix} = \begin{bmatrix} 1\\-1\\0\\1 \end{bmatrix}, \quad \mathbf{l}_1 = \mathbf{x}_2 \times \mathbf{x}_3 = \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix} \times \begin{bmatrix} 1\\-1\\2\\2 \end{bmatrix} = \begin{bmatrix} -1\\-1\\0\\0 \end{bmatrix}$$

The vanishing point associated to the pair of world lines $(\overline{X_2X_3}, \overline{X_1X_4})$ is then the intersection of k_1 and l_1 . In homogeneous coordinates we have:

$$\mathbf{v}_1 = \mathbf{k}_1 \times \mathbf{l}_1 = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} \times \begin{bmatrix} -1\\ -1\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ -2 \end{bmatrix}$$

Since the last coordinate of \mathbf{v}_1 is nonzero, the we can pass to the affine coordinates (by dividing by the last coordinate and taking the first two) and see that $v_{1_{(o,\alpha)}} = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\top}$.

Similarly, the representatives of the images k_2 and l_2 of the second pair of world lines $(\overline{X_1X_2}, \overline{X_3X_4})$ are:

$$\mathbf{k}_2 = \mathbf{x}_1 \times \mathbf{x}_2 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \times \begin{bmatrix} 1\\-1\\1 \end{bmatrix} = \begin{bmatrix} 2\\0\\-2 \end{bmatrix}, \quad \mathbf{l}_2 = \mathbf{x}_3 \times \mathbf{x}_4 = \begin{bmatrix} 1\\-1\\2 \end{bmatrix} \times \begin{bmatrix} 1\\1\\2 \end{bmatrix} = \begin{bmatrix} -4\\0\\2 \end{bmatrix}$$

The vanishing point associated to the pair of world lines $(\overline{X_1X_2}, \overline{X_3X_4})$ is then the intersection of k_2 and l_2 (in \mathbb{P}^2). In homogeneous coordinates we have:

$$\mathbf{v}_2 = \mathbf{k}_2 \times \mathbf{l}_2 = \begin{bmatrix} 2\\0\\-2 \end{bmatrix} \times \begin{bmatrix} -4\\0\\2 \end{bmatrix} = \begin{bmatrix} 0\\4\\0 \end{bmatrix}$$

Since the last coordinate of \mathbf{v}_2 is zero, then v_2 is a point at infinity of \mathbb{P}^2 . (This is logical since the world lines $\overline{X_1X_2}$ and $\overline{X_3X_4}$ are parallel to the image plane of the camera).

To find the horizon we need to find the line passing through the points v_1 (visible in the image) and v_2 (not visible in the image). We do this again by the cross product:

$$\mathbf{h} = \mathbf{v}_1 \times \mathbf{v}_2 = \begin{bmatrix} 0\\0\\-2 \end{bmatrix} \times \begin{bmatrix} 0\\4\\0 \end{bmatrix} = \begin{bmatrix} 8\\0\\0 \end{bmatrix} \sim \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

Passing to affine coordinates, we see that

$$h = \{(u, v) \in \mathbb{R}^2 \mid 1 \cdot u + 0 \cdot v + 0 = 0\}$$

is a line u = 0 in the image. Notice that the horizon of τ is (always) the intersection of the plane parallel to τ and passing through the camera center C and the image plane of the camera.