STRUCTURED MODEL LEARNING (SS2022) 1. SEMINAR

Assignment 1. Consider a collection $\{S_i \mid i=1,2,3\}$ of three binary valued random variables, i.e., $s_i \in \{0,1\}$ for i=1,2,3. Suppose we fix all three pairwise marginal distributions $p_{ij}(s_i,s_j) = \mu(s_i,s_j)$, where

$$\mu(s_i, s_j) = \begin{cases} \frac{1}{2}\alpha & \text{if } s_i = s_j, \\ \frac{1}{2}(1 - \alpha) & \text{otherwise} \end{cases}$$

and α is a fixed real number from the interval [0,1]. We seek a simple joint distribution $p(s_1,s_2,s_3)$ that has the given marginals. Someone proposes the properly normalised product of μ -s

$$\bar{p}(s_1, s_2, s_3) = \frac{1}{Z(\alpha)} \mu(s_1, s_2) \mu(s_2, s_3) \mu(s_1, s_3).$$

Prove that the pairwise marginal distributions of \bar{p} do not(!) coincide with the function μ .

Assignment 2. Consider a collection $\{S_i \mid i = 1, 2, 3\}$ of three binary valued random variables as in the previous assignment. Let us fix the following pairwise marginal distributions

$$p(s_1, s_2) = \mu(s_1, s_2)$$
, $p(s_1, s_3) = \mu(s_1, s_3)$, $p(s_2, s_3) = \tilde{\mu}(s_2, s_3)$

where

$$\mu(s_i, s_j) = \begin{cases} 0.5 & \text{if } s_i = s_j, \\ 0 & \text{otherwise,} \end{cases} \qquad \tilde{\mu}(s_i, s_j) = \begin{cases} 0.5 & \text{if } s_i \neq s_j, \\ 0 & \text{otherwise,} \end{cases}$$

Do the μ -s represent a valid system of pairwise marginal distributions? I.e., is there a joint distribution $p(s_1, s_2, s_3)$ whose pairwise marginals coincide with the μ -s?

Assignment 3. Let $S = \{S_i \mid i \in V\}$ be a K-valued random field and let \mathcal{P} denote the set of all possible joint probability distributions $p \colon K^{|V|} = \mathcal{S} \to \mathbb{R}_+$, s.t. $\sum_{s \in \mathcal{S}} p(s) = 1$.

- a) Prove that the distribution $p \in \mathcal{P}$ with highest entropy is the uniform distribution. Prove that it factorises into the product of its unary marginal distributions.
- **b)** Let us fix unary marginal distributions for each S_i , $i \in V$ by $p(s_i) = \mu_i(s_i)$. We assume that the functions $\mu_i \colon K \to \mathbb{R}_{++}$ fulfil $\sum_{k \in K} \mu_i(k) = 1$ for all $i \in V$.

Prove that the distribution

$$p(s) = \prod_{i \in V} \mu_i(s_i)$$

has the highest entropy among all joint distributions $p \in \mathcal{P}$ which have the given unary marginals. What happens if the functions μ_i are not necessarily strictly positive?

c) We equip V with the structure of an undirected graph (V, E). Let us fix pairwise marginal distributions for each pair of variables S_i , S_j where $\{i, j\} \in E$ by setting $p(s_i, s_j) = \mu_{ij}(s_i, s_j)$. All functions $\mu_{ij} \colon K^2 \to \mathbb{R}_{++}$ fulfil

$$\sum_{k,k'\in K} \mu_{ij}(k,k') = 1.$$

SML SS2022 2

Furthermore, we assume that the system of μ -s represents a valid system of pairwise marginals, i.e. there exists at least one strictly positive joint distribution $\bar{p} \in \mathcal{P}$ whose pairwise marginal distributions coincide with μ -s.

Fill in details for the derivation in Section 1. of the lecture and prove that the distribution $p \in \mathcal{P}$ with highest entropy (among all those that have the given fixed pairwise marginals) has the form

$$p_u(s) = \frac{1}{Z(u)} \exp \left[\sum_{ij \in E} u_{ij}(s_i, s_j) \right],$$

where u-s are Lagrange multipliers which have to determined such that p has the required pairwise marginals.

Assignment 4.* (Maximum entropy) Define a convex function $h: \mathbb{R} \to (-\infty, +\infty]$ by

$$h(u) = \begin{cases} u \log u - u & \text{if } u > 0 \\ 0 & \text{if } u = 0 \\ +\infty & \text{if } u < 0 \end{cases}$$

and a convex function $f: \mathbb{R}^n \to (-\infty, +\infty]$ by

$$f(x) = \sum_{i=1}^{n} h(x_i).$$

- (a) Prove f is strictly convex on \mathbb{R}^n_+ with compact level sets.
- (b) Suppose the map $G \colon \mathbb{R}^n \to \mathbb{R}^m$ is linear with $G\hat{x} = b$ for some point \hat{x} in the interior of \mathbb{R}^n_+ . Prove for any vector c in \mathbb{R}^n that the problem

$$\inf \{ f(x) + \langle c, x \rangle \mid Gx = b, x \in \mathbb{R}^n \}$$

has a unique solution \bar{x} lying in \mathbb{R}^n_{++} .

(c) Prove that some vector λ in \mathbb{R}^m satisfies $\nabla f(\bar{x}) = G^T \lambda - c$, and deduce $\bar{x}_i = \exp(G^* \lambda - c)_i$.