
STURCTURED MODEL LEARNING (WS2021/22)
SEMINAR 2

Assignment 1. Let X be a set of input observations and Y = An a set of sequences
of length n defined over a finite alphabet A. Let h : X → Y be a prediction rule
that for each x ∈ X returns a sequence h(x) = (h1(x), . . . , hn(x)). Assume that we
want to measure the prediction accuracy of h(x) by the expected Hamming distance
R(h) = E(x,y1,...,yn)∼p(

∑n
i=1[[hi(x) 6= yi]]) where p(x, y1, . . . , yn) is a p.d.f. defined over

X × Y . As the distribution p(x, y1, . . . , yn) is unknown we estimate R(h) by the test
error

RSl(h) =
1

l

l∑
j=1

n∑
i=1

[[yji 6= hi(x
j)]]

where S l = {(xi, yi1, . . . , yin) ∈ (X ×Y) | i = 1, . . . , l} is a set of examples drawn from
i.i.d. random variables with the distribution p(x, y1, . . . , yn).

a) Assume that the sequence length is n = 10 and that we compute the test error from
l = 1000 examples. Use the Hoeffding inequality to bound the probability that R(h)
will be in the interval (RSl(h)− 1, RSl(h) + 1) ?

b) What is the minimal number of the test examples l which we need to collect in order
to guarantee that R(h) is in the interval (RSl(h) − ε, RSl(h) + ε) with probability δ at
least? Write l as a function of ε, n and δ.

Hint: Apply the Hoeffding inequality on slide 4 of lecture 2.

Assignment 2. Assume we are training a Convolution Neural Network (CNN) based
classifier h : X → Y to predcit a digit y ∈ Y = {0, 1, . . . , 9} from an image x ∈ X . We
train the CNN by the Stchastic Gradient Descent (SGD) algorithm using 100 epochs.
After each epoch we save the current weights so that at the end of training we have a
set H = {ht : X → Y | i = 1, . . . , 100} containing 100 CNN classifiers. The goal is to
select the best CNN out ofH that has the minimal classification error

R(h) = E(x,y)∼p([[y 6= h(x)]]) ,

where the expectation is w.r.t. an unknown distribution p(x, y) generating the data.
Because p(x, y) is unknown, we approximate R(h) by the empirical risk

RVm(h) =
1

m

m∑
i=1

[[yj 6= h(xj)]] ,

computed from a validation set Vm = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m} containing
m examples i.i.d. drawn from p(x, y).
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a) Define a method based on the Empirical Risk Minimization which uses Vm to select
the best CNN out of a finite hypothesis classH.

b) What is the minimal number of validation examples m we need to collect in order to
have a guarantee that R(h) is in the interval (RVm(h)− 0.01, RVm(h) + 0.01) for every
h ∈ H with probability at least 95%?

Hint: Apply the uniform generalization bound for finite hypothsis space from slide 14 of
lecture 2.

Assignment 3. Let H ⊆ YX be a hypothesis class, R(h) the true risk and let hH ∈
Argminh∈HR(h) be the best predictor in the class H. Assume that for H we have the
uniform generalization bound

P(sup
h∈H
|RT m(h)−R(h)| ≥ ε) ≤ B(m,H, ε) ,

where B(m,H, ε) depends on the number of training examples m, the hypothesis class
H and the precision parameter ε > 0. For example, in the case of a finite hypothe-
sis space, we have B(m,H, ε) = 2|H| exp(− 2mε2

(b−a)2 ). Let hm be a prediction strategy
learned from the training examples T m by the ERM algorithm

hm ∈ Argmin
h∈H

RT m(h) .

Show that in this case the estimation error is at most ε, i.e.

R(hm)−R(hH) ≤ ε ,

with the probability 1−B(m,H, ε /2) at least.

Hint: Use the inequality at the very bottom of slide 13 of lecture 2.


