STRUCTURED MODEL LEARNING (WS2021/22) SEMINAR 3

Assignment 1. Let $\mathcal{G} \subseteq [0,1]^{\mathcal{Z}}$ be a set of functions $g: \mathcal{Z} \to [0,1]$. Let $\mathcal{U}^m = \{z^1, \ldots, z^m\} \in \mathcal{Z}^m$ be drawn i.i.d. from p(z). The Rademacher complexity of \mathcal{G} w.r.t. the distribution p(z) is

$$\hat{\mathcal{R}}_m(\mathcal{G}) = \mathbb{E}_{\mathcal{U}^m \sim p^m(z)} \mathbb{E}_{\sigma \sim \text{Unif}\{-1,+1\}} \left[\sup_{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^m \sigma_i g(z_i) \right]$$

a) What is the minimal value of the Rademacher complexity?

b) What is the value of the Rademacher complexity when \mathcal{G} contains just a single function, i.e. $|\mathcal{G}| = 1$?

c) What is the maximal value of the Rademacher complexity? What is the minimal number of functions in \mathcal{G} to achieve the maximal value?

Assignment 2. Let $\{(x^i, y^i) \in \mathbb{R}^n \times \{-1, +1\} \mid i = 1, ..., m\}$ be *m* points in \mathbb{R}^n that are assigned into two classes. Assume that there exists an ellipse separating the points in the positive class from the points in negative class, i.e., there exists a positive definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and scaler r > 0 such that

$$\begin{array}{ll} \langle \boldsymbol{x}^{i}, \boldsymbol{A}\boldsymbol{x}^{i} \rangle &\geq r^{2}, \quad \forall i \in \{j \in \{1, \dots, m\} \mid y^{i} = +1\}, \\ \langle \boldsymbol{x}^{i}, \boldsymbol{A}\boldsymbol{x}^{i} \rangle &< r^{2}, \quad \forall i \in \{j \in \{1, \dots, m\} \mid y^{i} = -1\}. \end{array}$$

$$(1)$$

Show how to use the Perceptron algorithm to find A and r which satisfy the inequalities (1).

Assignment 3. Let $\mathcal{X} = \mathcal{A}^n$ be a set of input sequences and $\mathcal{Y} = \mathcal{B}^n$ a set of hidden sequences of length n which are defined over finite alphabets \mathcal{A} and \mathcal{B} , respectively. Let $h: \mathcal{X} \to \mathcal{Y}$ be a prediction rule that for each $x \in \mathcal{X}$ returns a sequence $h(x) = (h_1(x), \ldots, h_n(x))$ obtained solving

$$h(x) = \arg\max_{(y_1,\dots,y_n)\in\mathcal{B}^n} \left(\sum_{i=1}^n q(x_i, y_i) + \sum_{i=2}^n g(y_{i-1}, y_i)\right)$$
(2)

where $q: \mathcal{A} \times \mathcal{B} \to \mathbb{R}$ and $g: \mathcal{B} \times \mathcal{B} \to \mathbb{R}$ are quality functions describing compatibility between inputs and hidden states.

a) Show that (2) is a linear classifier.

b) Describe a dynamic programming algorithm which computes the output of the classifier (2) in time polynomial in the size of the input instances. How does the algorithm scale with $|\mathcal{A}|$, $|\mathcal{B}|$ and n?

c) Describe an instance of Perceptron algorithm which learns the quality functions q and g from linearly separable examples $\{(x_1^j, \ldots, x_n^j, y_1^j, \ldots, y_n^j) \in \mathcal{A}^n \times \mathcal{B}^n \mid j = 1, \ldots, m\}$.

Assignment 4. Consider a linear ordinal classifier $h \colon \mathbb{R}^n \to \{1, \dots, Y\}$ defined by

$$h(\boldsymbol{x}) = 1 + \sum_{y=1}^{Y-1} \llbracket \langle \boldsymbol{w}, \boldsymbol{x} \rangle \ge b_y \rrbracket$$
(3)

and parameterized by a vector $\boldsymbol{w} \in \mathbb{R}^n$ and an increasing sequence of thresholds $b_1 < b_2 < \cdots < b_{Y-1}$. Let $\mathcal{T}^m = \{(\boldsymbol{x}^j, y^j) \in (\mathbb{R}^n \times \mathcal{Y}) \mid j = 1, \ldots, m\}$ be a training set of examples. Describe a variant of the Perceptron algorithm which finds the parameters $\boldsymbol{w} \in \mathbb{R}^n$ and $b_y \in \mathbb{R}, y \in \{1, \ldots, Y-1\}$, such that the classifier (3) predicts all examples from \mathcal{T}^m correctly provided such parameters exist.