# Computed tomography (CT) 

## Part 1

J. Kybic, A. Sopczak ${ }^{1}$<br>Department of cybernetics, FEE CTU http://cmp.felk.cvut.cz/~kybic<br>kybic@fel.cvut.cz<br>2005-2024

${ }^{1}$ Using images from J. Hozman, J. Fessler, S. Webb, M. Slaney, A. Kak and others

Introduction to CT

## Hardware

## Mathematics and Physics of CT

Radon transform

## Computed Tomography (CT) scanner



## CT history

1917 mathematical theory (Radon)
1956 tomography reconstruction in radioastronomy (Bracewell)
1963 CT reconstruction theory (Cormack)
1971 CT principles demonstrated (Hounsfield)
1972 first working CT for humans (EMI, London, Hounsfield)
1973 PET, Positron Emission Tomography
1974 Ultrasound tomography
1975 whole body scanner (Hounsfield)
1982 Single Photon Emission Computed Tomography (SPECT)
1985 Helical CT
1998 Multislice CT, 0.5 s/frame

## Johann Radon



OUJ. Racen.

- born in Děčín (Czech Republic), lived in Göttingen, Brno, Hamburg, Greifswald, Erlangen, Breslau, Innsbruck and Vienna
- mathematician; Radon transform (1917) - reconstruction of a function from its integrals on certain manifolds (projections)


## Godfrey Hounsfield

- physicist and engineer (did not attend university)
- worked on radar and on first transistor computers
- created the first CT X-ray scanner
- Nobel prize in Medicine (1979, together with Cormack)


## Allan MacLeod Cormack

 1924-1998

- born in South Africa, studied in Cambridge, lived in the US
- particle physicist
- theoretical foundation of CT scanning (independently of Hounsfield)
- Nobel prize in Medicine (1979, together with Hounsfield)


## CT principles



Head section

1. Sequence of parallel sections (tomos)

## CT principles



1. Sequence of parallel sections (tomos)
2. Sequence of projections from multiple directions

## CT principles



1. Sequence of parallel sections (tomos)
2. Sequence of projections from multiple directions
3. Reconstruction of the object

## CT example scans



Head and kidneys

## CT example scans



CT angiography, pelvis

## Clinical applications

- Lungs



## Clinical applications

- Lungs



## Clinical applications

- Lungs
- Head


Clinical applications

- Lungs
- Head


Clinical applications

- Lungs
- Head



## Clinical applications

- Lungs
- Head
- Abdomen



## Tomography modalities

- X-rays - CT
- gamma rays - PET, positron emission tomography
- gamma rays - SPECT, single-photon emission computerized tomography
- light - optical tomography
- RF waves - MRI, magnetic resonance imaging
- DC - electric impedance tomography
- ultrasound - ultrasound tomography

Introduction to CT

Hardware

Mathematics and Physics of CT

Radon transform

First scanner


## Scanner geometry - generation 1

1971


- Single source and single detector
- Finely collimated narrow beam
- Alternating translation and rotation
- Very slow (4 min / section), low resolution
- Low cost, good scatter rejection, easy calibration


## Scanner geometry - generation 2

 1974Multiple degree increments


- Narrow fan beam $\left(\sim 10^{\circ}\right)$, multiple detectors ( $N$ )
- $N$ projections acquired in parallel
- Increased rotation increment
- Increased speed (20 s / section)

Scanner geometry - generation 3 1975

Rotation only


- Wide fan beam $\left(30^{\circ} \sim 60^{\circ}\right)$ covering complete field of view
- 100s of detectors
- Only rotation, no translation
- Pulsed or continuous acquisition
- Fast (5 s / section)
- Cone beam geometry
- Most frequently used


## Fan-beam detector

Scanner geometry - generation 4
Rotation only


- Rotating source, stationary detector rings
- More expensive
- Avoids rotating contacts
- Fast

Circular ring detector

## Electron beam CT



- No moving parts
- Directional X-ray source
- Extremely fast (beating heart)
- Lower signal to noise ratio and spatial resolution


## CT X-ray sources

Similar but bigger than radiography X -ray sources
Typical properties of an X-ray tube used for CT compared to those of a conventional radiographic tube.

|  | Conventional <br> X-Ray Tube | CT X-Ray Tube |
| :--- | :--- | :--- |
| Typical exposure parameters | $70 \mathrm{kV}, 40 \mathrm{mAs}$ | $120 \mathrm{kV}, 10,000 \mathrm{mAs}$ |
| Energy requirements | $2,800 \mathrm{~J}$ | $1,200,000 \mathrm{~J}$ |
| Anode diameter | 100 mm | 160 mm |
| Anode heat storage capacity | $450,000 \mathrm{~J}$ | $3,200,000 \mathrm{~J}$ |
| Maximum anode heat dissipation | $120,000 \mathrm{~J} / \mathrm{min}$ | $540,000 \mathrm{~J} / \mathrm{min}$ |
| Maximum continuous power <br> rating | 450 W | 4000 W |
| Cooling method | Fan |  |

- Challenges: Power leads, cooling, vibration, ...


## CT X-ray sources

Similar but bigger than radiography X -ray sources


- Challenges: Power leads, cooling, vibration, ...


## CT X-ray sources (future?)

Liquid anode tube: overcoming power density limitations of solid target X -ray tubes


- Tin, gallium, indium, ...
- Heat dissipation problem nearly obsolete
- Small focal sizes viable ( $10-15 \mu \mathrm{~m}$ ) at high power ( $\sim 500 \mathrm{~W}$ )
$\Rightarrow$ Allows for high magnification / system resolution


## Filtering and collimation (1)



Filtering and collimation (2)

- Beam shaping (attenuate lateral part of the beam)

- Pre-patient and detector collimation - beam(slice) width


## CT detector types

- Xenon ionization chamber detectors
- Faster but less sensitive
- Scintillation detectors
- More sensitive but slower (afterglow, scintillator dependent)



## CT detector types

Properties of detectors in common use in CT scanning.

|  | Xenon Detectors | Crystal Scintillator | Ceramic Scintillator |
| :---: | :---: | :---: | :---: |
| Detector | High pressure (8-25 atm) Xe ionisation chamber | $\mathrm{CaWO}_{4}+$ silicon photodiode | $\mathrm{Gd}_{2} \mathrm{O}_{2} \mathrm{~S}+$ silicon photodiode |
| Detector array | Single chamber, divided into elements by septa | Discrete detectors | Discrete detectors |
| Signal | Proportional to ionisation intensity | Proportional to light intensity | Proportional to light intensity |
| Detector efficiency | 40\%-70\% | 95\%-100\% | 90\%-100\% |
| Geometric efficiency (in fan direction) | >90\% | >80\% | >80\% |
| Afterglow limitations | No | Yes | No |
| Detector matching | No | Yes | Yes |

Scintillation detector construction


## Scintillation detector construction



Multiple (e.g. 32, 64) slices $\longrightarrow$ acceleration

Scintillation detector construction


Multiple (e.g. 32, 64) slices $\longrightarrow$ acceleration

## X-ray detectors: Photon counting detectors

e.g. Timepix/Medipix


- Unlimited dynamic range and exposure time
- Detected count obeys Poisson distribution


## Electric processing - corrections

- Offset correction (zero signal at rest)
- Normalization correction (x-ray source intensity fluctuation)
- Sensitivity correction (inhomogeneous detectors and amplifiers)
- Geometric correction
- Beam hardening correction
- Cosine correction (for fan beam geometry)

Introduction to CT

## Hardware

Mathematics and Physics of CT

Radon transform

## Attenuation along a line

Homogeneous material (Beer-Lambert's law)


$$
I=I_{0} \mathrm{e}^{-\mu \Delta \xi}
$$

Piecewise homogeneous material

$$
I=I_{0} \prod_{i=1}^{n} \mathrm{e}^{-\mu \Delta \xi}=I_{0} \mathrm{e}^{-\Delta \xi \sum_{i=1}^{n} \mu_{i}}
$$

Continuously varying $\mu(x), x=i \Delta \xi$

$$
\begin{aligned}
I & =I_{0} \mathrm{e}^{-\lim _{\Delta \xi \rightarrow 0} \Delta \xi \sum_{i=1}^{n} \mu_{i}} \\
& =I_{0} \mathrm{e}^{-\int_{0}^{D} \mu(x) \mathrm{d} x}
\end{aligned}
$$

Line integral for line $L$

$$
I=I_{0} \mathrm{e}^{-\int_{L} \mu(\mathrm{x}) \mathrm{dx}}
$$

## Hounsfield units

HU, CT number

$$
C T=1000 \frac{\mu-\mu_{\text {water }}}{\mu_{\text {water }}}
$$

- Values between - 1000 (air) and approximately 1000 (bones)
- Densities in HU are reproducible between devices
- To differentiate soft tissue types, tumor types etc.
- Accurate calibration is needed


## Hounsfield units

HU, CT number


## Attenuation descreases with $E$



## Attenuation, interaction types



Attenuation, materials


- "absorption edges" correspond binding energies of electrons from atom's shells.


## Beam hardening



## Beam hardening



- Measured attenuation $p=\log \left(I_{0} / I\right)<$ theoretically linear $\mu \Delta \xi$.
- Beam hardening correction


## Linear forward problem



For $N$ straight lines $L_{j}$, measure the attenuation

$$
p_{j}=\log \frac{\rho_{0}^{j}}{\rho_{j}^{j}}=\int_{L_{j}} \mu(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

## Assumptions

- Infinitely thin rays
- Straight lines - no scattering, reflection or refraction
- Monochromatic radiation - no beam hardening


## Linear forward problem

For $N$ straight lines $L_{j}$, measure the attenuation

$$
p_{j}=\log \frac{\rho_{0}^{j}}{\frac{1 j}{j}}=\int_{L_{j}} \mu(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

## Assumptions

- Infinitely thin rays
- Straight lines - no scattering, reflection or refraction
- Monochromatic radiation - no beam hardening
(Assumptions can be relaxed but more complicated dependency.)


## Discretization

$$
\mu(\mathbf{x})=\sum_{i=1}^{M} c_{i} \psi_{i}(\mathbf{x}) \quad \text { with pixels } \psi_{i}
$$

$\longrightarrow$ linear system of equations $L \mathbf{c}=\mathbf{p}$

## Integration lines in polar coordinates



Describe integration lines by angle $\varphi$ and offset $r$ :

$$
\begin{aligned}
L(\varphi, r) & =\left\{(x, y) \in \mathbb{R}^{2} ; x \cos \varphi+y \sin \varphi=r\right\} \\
& =\{(r \cos \varphi-t \sin \varphi, r \sin \varphi+t \cos \varphi) ; t \in \mathbb{R}\}
\end{aligned}
$$

## Integration lines in polar coordinates

Describe integration lines by angle $\varphi$ and offset $r$ :

$$
\begin{aligned}
L(\varphi, r) & =\left\{(x, y) \in \mathbb{R}^{2} ; x \cos \varphi+y \sin \varphi=r\right\} \\
& =\{(r \cos \varphi-t \sin \varphi, r \sin \varphi+t \cos \varphi) ; t \in \mathbb{R}\}
\end{aligned}
$$

Implicit line equation, $\mathbf{x}=(x, y)$

$$
[\cos \varphi, \sin \varphi] \mathbf{x}=0
$$

Parametric line equation

$$
\underbrace{\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]}_{\text {rotation matrix } R(\varphi)}\left[\begin{array}{l}
r \\
t
\end{array}\right]=\mathbf{x}
$$

## Introduction to CT

> Hardware

> Mathematics and Physics of CT

Radon transform

## Rotating system of coordinates

$$
\begin{aligned}
{\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right] } & =R(\varphi)\left[\begin{array}{l}
\xi^{\prime} \\
\eta^{\prime}
\end{array}\right] \\
{\left[\begin{array}{l}
\xi^{\prime} \\
\eta^{\prime}
\end{array}\right] } & =R^{T}(\varphi)\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right] \\
R^{T}(\varphi) & =R(-\varphi)
\end{aligned}
$$

Projection

$$
P_{\varphi}\left(\xi^{\prime}\right)=\int_{L\left(\varphi, \xi^{\prime}\right)} \mu(\mathbf{x}) \mathrm{d} \mathbf{x}=\int o\left(\xi^{\prime}, \eta^{\prime}\right) \mathrm{d} \eta^{\prime}
$$

Measurements

$$
P_{\varphi}\left(\xi^{\prime}\right)=\log \frac{I_{0}}{I\left(\varphi, \xi^{\prime}\right)}
$$



Change of variables

$$
\xi^{\prime}=r, \quad \eta^{\prime}=t, \quad x=\xi, \quad y=\eta
$$

## Radon transform

Projection in polar coordinates:

$$
\begin{aligned}
& P_{\varphi}\left(\xi^{\prime}\right)=\mathscr{R}[o(\xi, \eta)] \\
& P_{\varphi}\left(\xi^{\prime}\right)=\int_{L} o(\xi, \eta) \mathrm{d} /
\end{aligned}
$$

along the line $L$ defined by $\varphi$ a $\xi^{\prime}$ :

$$
\xi^{\prime}=\xi \cos \varphi+\eta \sin \varphi
$$

Equivalently

$$
P_{\varphi}\left(\xi^{\prime}\right)=\int o\left(\xi^{\prime} \cos \varphi-\eta^{\prime} \sin \varphi, \xi^{\prime} \sin \varphi+\eta^{\prime} \cos \varphi\right) \mathrm{d} \eta^{\prime}
$$

## Radon transform properties

- Function $f$ - unknown density, Radon transform - projection data.
- inverse of the Radon transform - reconstruction


## Properties

- Linearity:

$$
\mathscr{R}[\alpha f+\beta g]=\alpha \mathscr{R}[f]+\beta \mathscr{R}[f]
$$

- Periodicity:

$$
P_{\varphi}\left(\xi^{\prime}\right)=P_{\varphi \pm 2 \pi}\left(\xi^{\prime}\right)=P_{\varphi \pm \pi}\left(-\xi^{\prime}\right)
$$

... and many others

## Radon transform of a point

$$
\begin{aligned}
& o(\xi, \eta)=\delta\left(\xi-\xi_{0}, \eta-\eta_{0}\right) \\
& P_{\varphi}\left(\xi^{\prime}\right)=\mathscr{R}[o(\xi, \eta)]=\delta\left(\xi_{0} \cos \varphi+\eta_{0} \sin \varphi-\xi^{\prime}\right)
\end{aligned}
$$

$\ldots$ is a sinusoid with amplitude $\sqrt{\xi_{0}^{2}+\eta_{0}^{2}}$ and phase $\angle\left(\xi_{0}, \eta_{0}\right)$.

$$
\xi^{\prime}=\xi_{0} \cos \varphi+\eta_{0} \sin \varphi
$$




Radon transform
(sinogram) of a disc

## Radon transform

(sinogram)
$\quad$ of a square
(inverted)


## Radon transform

(sinogram)
of an object with
inserts (inverted)


Object


Sinogram

