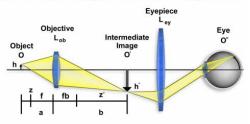
Microscopy

Jan Kybic¹

2011-2024

¹Using material from Davidson and Abramowitz: Optical Microscopy


Microscopy

Optical microscopy – since 17th century; Jensen, van Leeuwenhoek, Galilei, . . .

Finite-Tube Length Microscope

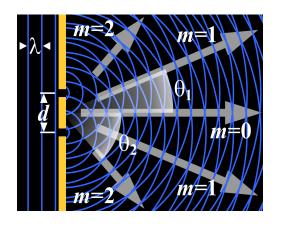
Finite-Tube Length Microscope Ray Paths

- ightharpoonup magnification of the objective $\frac{b}{a}$
- ightharpoonup magnification of the eyepiece $\frac{25 \text{ cm}}{f_{\text{eyepiece}}}$
- ▶ thin-lens equation

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$

- narrow range of image distances
- specifically corrected optical systems with matching eyepieces

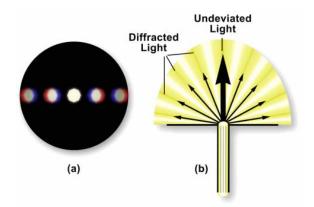
Infinite-Tube Length Microscope



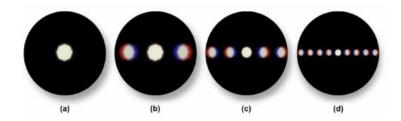
- ► Modern design (since 1980s)
- lackbox Objective magnification determined by $rac{f_{
 m tb}}{f_{
 m ob}}$
- ▶ Infinity space to add polarizers, prisms, retardation plates. . .
- Independently changeable objective and eyepiece

Image Formation

- Direct/undeviated light
- Deviated/diffracted light, out of phase
- ► Constructive/destructive interference


Diffraction

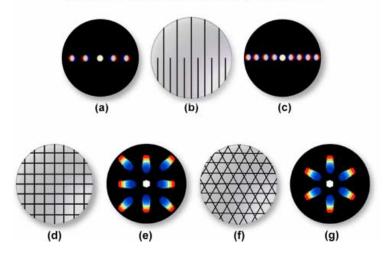
Position of maxima:


$$d\sin\theta = m\lambda, \quad m \in \mathbf{Z}$$

Diffraction

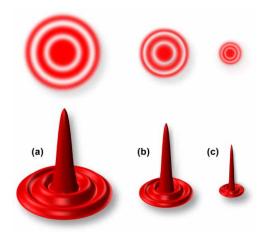
- constructive/desctructive interference
- specimen = superposition of complex gratings (Ernst Abbe)
- ▶ to resolve image, at least 0th order and 1st order images must be captured
- ▶ more orders captured → better accuracy

Line Grating Diffraction Patterns

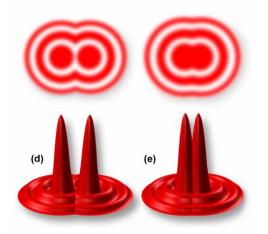


- line phantom
- close diaphragm
- telescope, observe the rear focal plane of the objective
- (a) no phantom, (b) $10\times$, (b) $40\times$ (higher NA), (c) $60\times$ (highest NA)
- ▶ 0th order, 1st order image

Slit and Grid Diffraction Patterns



Slit and Grid Diffraction Patterns


- ▶ Diffraction patterns behave like Fourier transforms of the sample
- Fourier optics

Airy disks

- ▶ NA increases left to right.
- ► Impulse response (PSF)

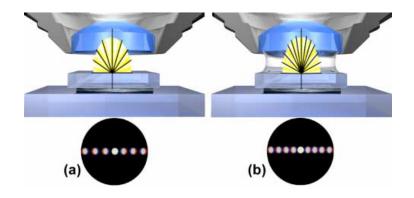
Airy disks (2)

Resolution limit.

Resolution limit

Rayleigh equation:

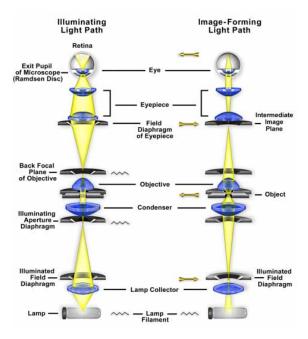
$$d \approx 1.22 \frac{\lambda}{2 \text{ NA}}$$


To improve resolution, use:

- ► Big lenses (big NA)
- ► Short wavelength (blue)

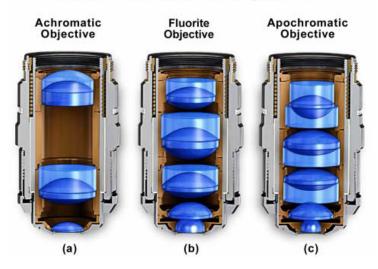
Numerical aperture:

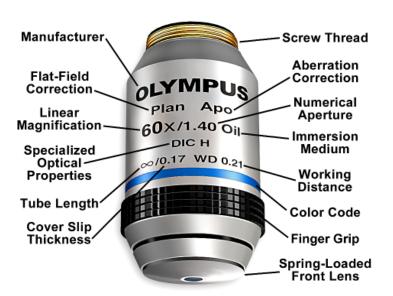
- $ightharpoonup NA = n \sin \theta$, with half-cone angle θ
- ▶ air $n \approx 1$, oil $n \approx 1.5$
- ▶ f-number $N = f/D \approx 1/(2NA)$, written as f/N, with diameter D.


Immersion optics

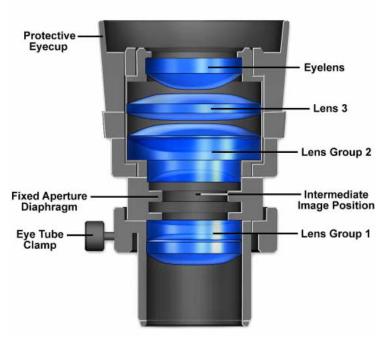
- High refractive-index media (immersion oil) reduce diffraction angle
- ightharpoonup ightharpoonup More orders are captured
- ightharpoonup ightharpoonup Better image

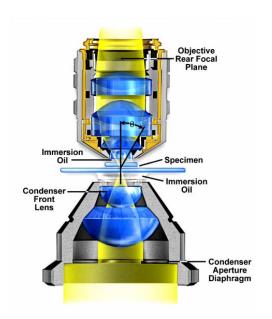
Köhler illumination

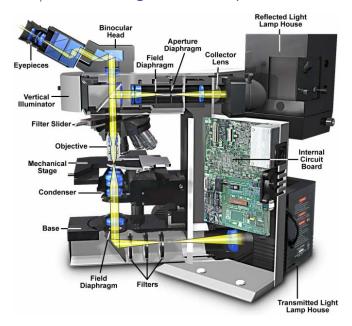

- Focused lamp image is projected to the diaphraghm of a condenser.
- Field diaphraghm controls width of the light bundle.
- Apperture diaphraghm controls the light intensity. Trade-off between diffraction artifacts and glare.
- Light is not focused on the specimen, illumination is homogeneous.
- ► The focal point of image-forming rays is at the level of the specimen.


Optical Aberrations

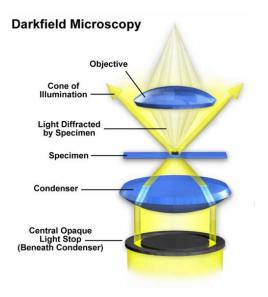
- Geometric aberrations
 - Spherical rays on axis and far from the axis do not converge to the same point. Blurred images.
 - ► Flat-field because lenses are curved, the image is curved. Center and off-center not simultaneously in focuss.
- Chromatic aberrations rays of different color do not converge to the same point


Optical Correction in Objectives


Objective Specifications


Eyepiece Cutaway Diagram

Condenser



Transmitted/Reflected light microscope

Contrast enhancing techniques

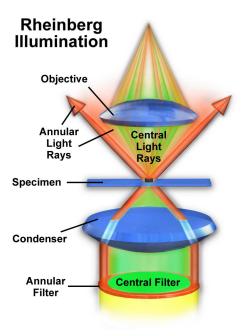
- Dark field microscopy
- Rheinberg illumination
- Phase contrast microscopy
- Polarized light
- ► Hoffman modulation
- ▶ Differential interfence contrast

For unstained objects. Appear bright on dark background.

Darkfield microscopy (2)

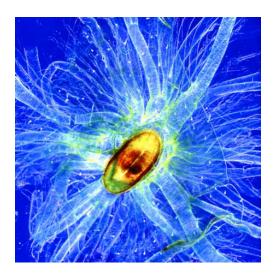

Arachnoidiscus ehrenbergi (rozsivka)

Darkfield microscopy (3)

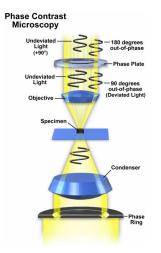


Langerhans islets

Brightfield microscopy

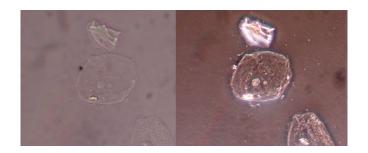


Langerhans islets

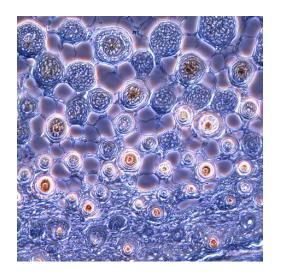


Color annular filters instead of the darkfield stop.

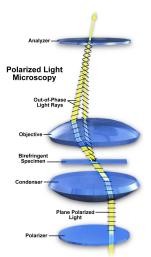
Rheinberg illumination (2)


silkworm larva

Frits Zernike (1930s, Nobel price 1953). Show differences in phase/refractive index.


Interference. Slow down/Speed up. direct light \rightarrow bright/dark contrast

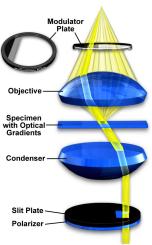
Phase contrast microscopy (2)


cells

Phase contrast microscopy (2)

mouse hair cross-section

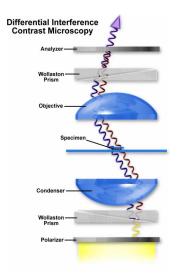
Polarized light microscopy



- different refractive indices for different polarizations
- lacktriangle interference subtracts some wavelength ightarrow colors

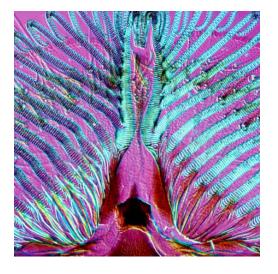
Polarized light microscopy (2)

Hoffman Modulation Contrast Microscopy

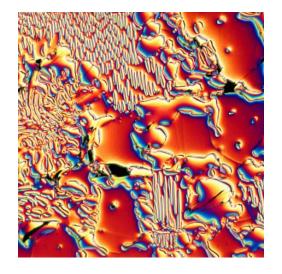


Robert Hoffman (1975). For living and unstained specimens. Detects optical gradients. Image intensity proportional to the derivative of the optical intensity of the specimen.

Hoffman modulation contrast (2)



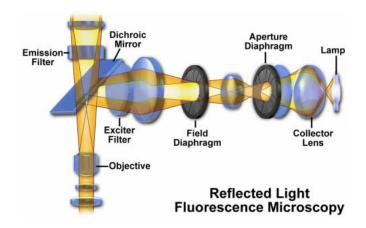
Dinosaur bone


Detects differences in optical paths between two close slightly offset rays (shear). Wollaston prism \rightarrow orthogonal polarizations.

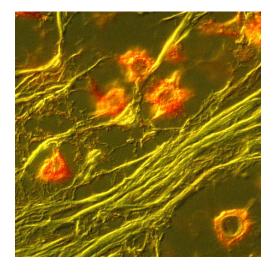
Differential interference contrast microscopy (2)

Mouth part of a blowfly.

Differential interference contrast microscopy (3)



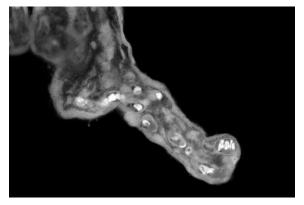
Defects in ferro-silicon alloy.


Fluorescence microscopy

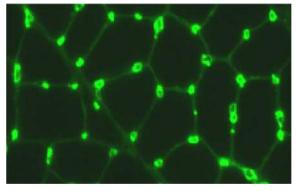
- fluorescent dyes
- multiple sensing channels/filters
- ► multiple light sources visible, UV

Fluorescence microscopy (2)

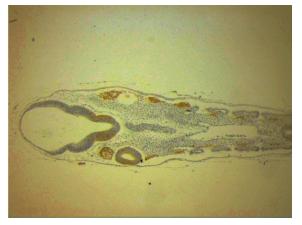
Fluorescence microscopy (3)


cat brain tissue infected with Cryptococcus (fungus)

Fluorescence microscopy (4)


Drosophila eggs gene expression

Other examples images


placenta cross-section

Other examples images

muscle capillaries

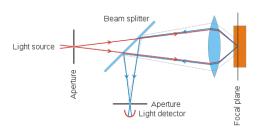
Other examples images

crocodile ear slice

Advanced microscopy techniques

3D microscopy

- Confocal microscopy
- Optical coherence tomography (OCT)
- Multiphoton / two-photon microscopy

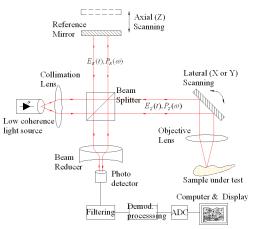

High resolution microscopy

- Stimulated emission depletion (STED)
- Stochastic optical reconstruction microscopy (STORM)
- Photo-activated localization microscopy (PALM)

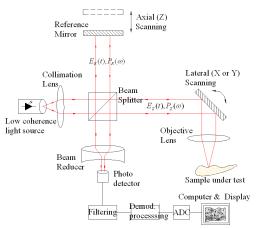
Electron microscopy

- Scanning electron microscopy (SEM)
- Serial section EM (3D)
- ► Focused ion beam (FIB) (3D)
- Transmission electron microscopy (TEM)

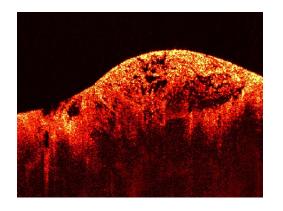
Confocal microscopy


- Very good resolution
- ▶ Very thin focal plane 3D imaging
- Confocal laser scanning
- Scanning slow

Confocal microscopy example


Tetrachimena

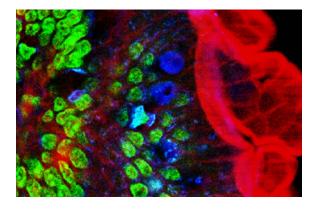
Optical coherence tomography (OCT)


- ► 3D imaging
- Interferometry
- ▶ More penetration than confocal, especially near infrared

Optical coherence tomography (OCT)

- ▶ 3D imaging
- Interferometry
- ▶ More penetration than confocal, especially near infrared
- ► Fourier-domain OCT one z column at a time

OCT example

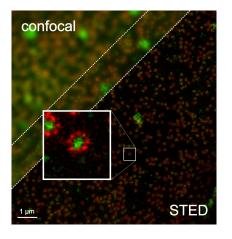

Sarcoma

Fluorescence — Two-photon microscopy

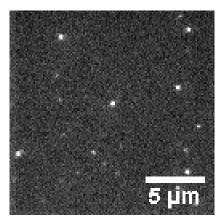
- ▶ two low-energy photons → fluorescence
- high-flux laser
- better penetration
- reduced phototoxicity
- better background suppression

Maria Goeppert-Mayer (1931 publication, 1963 Nobel prize)

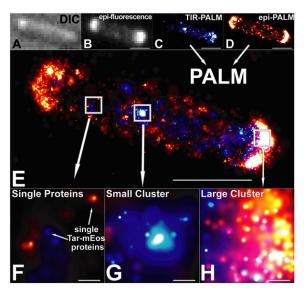
Two-photon microscopy (2)


Two-photon excitation microscopy of mouse intestine. Red: actin. Green: cell nuclei. Blue: mucus of goblet cells. [Wikipedia]

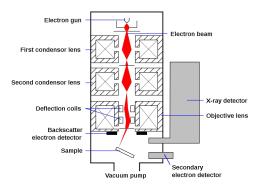
Superresolution — Stimulated emission depletion (STED)


- excitation subpicosecond laser impulse
- depletion pulse around the focal spot, stimulating the emission
- ▶ fluorescence at the focal spot remains
- ightharpoonup resolution 2 \sim 80 nm
- ► Hell and Klar, 1999. Hell awarded the Nobel Prize in Chemistry in 2014

Stimulated emission depletion (STED) (2)

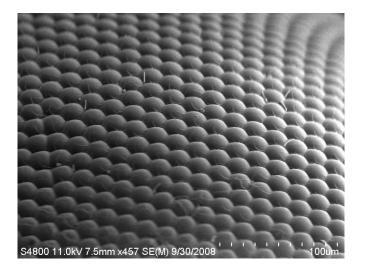

STED versus confocal

Stochastic optical reconstruction microscopy (STORM/PALM)

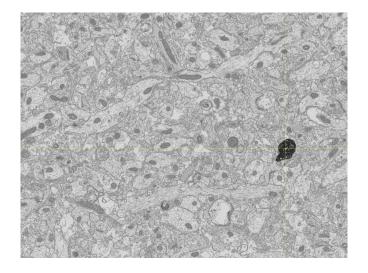


- sparse fluorophores localized by PSF fitting
- combine many images
 PALM photobleaching, STORM reversible switching

Stochastic optical reconstruction microscopy (STORM/PALM)



Scanning electron microscopy (SEM)


- ► Excellent resolution (a few nm)
- ▶ Needs vaccuum. Preparation gold coating, osmium staining, cryofixation.

SEM example

Fly eye

FIB example

► Focused ion beam for slice cutting. True 3D

Microscopy — digitalization & automation

- CCD cameras
 - supercooled
 - superresolution
- ► Moveable specimen tray
 - Auto-focusing
 - Automated acquisition, mosaicking
- Automatic processing

Microscopy

- Advantages
 - ► High-spatial resolution
 - Colour and texture information
 - Affordable (optical microscopy)
 - ► Proven technique large body of experts available
- Disadvantages
 - Difficulties of in-vivo observations
 - Mostly 2D
 - Missing large-scale perspective