Magnetic resonance imaging Part 2

André Sopczak

Institute of Experimental and Applied Physics, Czech Technical University in Prague http://cern.ch/sopczak andre.sopczak@cvut.cz based on lectures 2008-2023 by J.Kybic, J.Hornak¹, M.Bock, J.Hozman, P.Doubek Department of Cybernetics, FEE CTU

2024

¹http://www.cis.rit.edu/htbooks/mri/

Excitation sequences Free induction decay Spin echo

Positional encoding

Frequency encoding Slice selection Phase encoding Mathematics of Fourier encoding Quadrature detector Aliasing Reconstruction

MRI excitation sequence

Time sequence

- radio frequency pulses
- magnetic field changes
- signal acquisition intervals

for signal or image acquisition

• 90° pulse flips **M** to xy plane

- 90° pulse flips **M** to xy plane
- Magnetization **M** starts to rotate around *z* (precession)

- 90° pulse flips **M** to *xy* plane
- Magnetization **M** starts to rotate around z (precession)
- Exponential decay of $\|\mathbf{M}\|$ (FID) because of T_2 relaxation

- 90° pulse flips **M** to xy plane
- Magnetization **M** starts to rotate around *z* (precession)

- 90° pulse flips **M** to *xy* plane
- Magnetization **M** starts to rotate around *z* (precession)

- 90° pulse flips **M** to xy plane
- Magnetization **M** starts to rotate around *z* (precession)

- 90° pulse flips **M** to xy plane
- Magnetization **M** starts to rotate around *z* (precession)

- 90° pulse flips **M** to xy plane
- Magnetization **M** starts to rotate around *z* (precession)

- 90° pulse flips **M** to xy plane
- Magnetization **M** starts to rotate around *z* (precession)

- 90° pulse flips **M** to *xy* plane
- Magnetization **M** starts to rotate around *z* (precession)
- Exponential decay of $\|\mathbf{M}\|$ (FID) because of T_2 relaxation

- 90° pulse flips **M** to *xy* plane
- Magnetization **M** starts to rotate around *z* (precession)
- Exponential decay of $\|\mathbf{M}\|$ (FID) because of T_2 relaxation

- 90° pulse flips **M** to *xy* plane
- Magnetization **M** starts to rotate around z (precession)
- Exponential decay of $\|\mathbf{M}\|$ (FID) because of T_2 relaxation

- 90° pulse flips **M** to *xy* plane
- Magnetization **M** starts to rotate around z (precession)
- Exponential decay of $\|\mathbf{M}\|$ (FID) because of T_2 relaxation

- 90° pulse flips **M** to *xy* plane
- Magnetization **M** starts to rotate around z (precession)
- Exponential decay of $\|\mathbf{M}\|$ (FID) because of T_2 relaxation

- 90° pulse flips **M** to *xy* plane
- Magnetization **M** starts to rotate around *z* (precession)
- Exponential decay of $\|\mathbf{M}\|$ (FID) because of T_2 relaxation

- 90° pulse flips **M** to *xy* plane
- Magnetization **M** starts to rotate around *z* (precession)
- Exponential decay of $\|\mathbf{M}\|$ (FID) because of T_2 relaxation
- Time diagram / Excitation sequence

- 90° pulse flips **M** to *xy* plane
- Magnetization **M** starts to rotate around z (precession)
- Exponential decay of $\|\mathbf{M}\|$ (FID) because of T_2 relaxation
- Time diagram / Excitation sequence

Sequence is repeated with period T_R (repetition time).

Complete and partial relaxation

- For maximum signal wait until complete T_1 relaxation ($T_R > T_1 \approx 1 \, s$) long acquisition
- Shorter $T_R \rightarrow$ only partial relaxation, smaller $M_z \rightarrow$ smaller M_{xy}

Complete and partial relaxation

- For maximum signal wait until complete T_1 relaxation ($T_R > T_1 \approx 1 \, s$) long acquisition
- Shorter $T_R
 ightarrow$ only partial relaxation, smaller $M_z
 ightarrow$ smaller M_{xy}
- Calibration cycles before each slice acquisition.

90° Free induction decay (2)

Signal intensity after excitation

$$S \propto arrho (1-{
m e}^{-rac{T_R}{T_1}})$$

depends on M_z , which depends on T_R — time from the previous excitation.

S — signal amplitude

$$\varrho$$
 — spin density
 T_R — repetition time ($T_R > T_2$)

• 90° pulse

• 90° pulse

• 90° pulse

• 90° pulse

- 90° pulse
- Spins start to desynchronize

Spin-echo sequence (2)

• 180° pulse — rotation around x'

• 180° pulse — rotation around x'

• 180° pulse — rotation around x'

• 180° pulse — rotation around x'

- 180° pulse rotation around x'
- Resynchronization (slower spins will be ahead and vice versa)

- 180° pulse rotation around x'
- Resynchronization (slower spins will be ahead and vice versa)

- 180° pulse rotation around x'
- Resynchronization (slower spins will be ahead and vice versa)

- 180° pulse rotation around x'
- Resynchronization (slower spins will be ahead and vice versa)
- Echo signal appears

- 180° pulse rotation around x'
- Resynchronization (slower spins will be ahead and vice versa)
- Echo signal appears

- 180° pulse rotation around x'
- Resynchronization (slower spins will be ahead and vice versa)
- Echo signal appears

- 180° pulse rotation around x'
- Resynchronization (slower spins will be ahead and vice versa)
- Echo signal appears

- 180° pulse rotation around x'
- Resynchronization (slower spins will be ahead and vice versa)
- Echo signal appears
- Time diagram

Signal intensity

$$S \propto arrho (1-{
m e}^{-rac{T_R}{T_1}}){
m e}^{-rac{T_E}{T_2}}$$

- S signal amplitude
- ϱ spin density
- T_R repetition time

 T_E — echo time (time between the 90° pulse and readout)

 T_1 — spin-lattice relaxation time

 T_2 — spin-spin relaxation time

changing T_R a T_E determines the influence of T_1 and T_2

Spin-echo sequence — T_2^{inhom} compensation

 T_2^* relaxation is caused by spin-spin interactions (T_2) and field inhomogeneity (T_2^{inhom})

$$rac{1}{T_2^*}=rac{1}{T_2}+rac{1}{T_2^{\mathsf{inhom}}}$$

resynchronization compensates the inhomogeneity (T_2^{inhom}) to measure T_2

- homogeneous samples: $T_2^{\text{inhom}} \gg T_2 \rightarrow T_2^* \approx T_2$
- real tissues: $T_2^{ ext{inhom}} < T_2
 ightarrow T_2^* < T_2$

- 180° pulse \rightarrow magnetization $\mathbf{M} \rightarrow -z$
- Before equilibrium, 90° pulse \rightarrow precession around z

- 180° pulse \rightarrow magnetization $\mathbf{M} \rightarrow -z$
- Before equilibrium, 90° pulse \rightarrow precession around z

- 180° pulse \rightarrow magnetization $\mathbf{M} \rightarrow -z$
- Before equilibrium, 90° pulse \rightarrow precession around z

- 180° pulse \rightarrow magnetization $\mathbf{M} \rightarrow -z$
- Before equilibrium, 90° pulse \rightarrow precession around z

- 180° pulse \rightarrow magnetization $\mathbf{M} \rightarrow -z$
- Before equilibrium, 90° pulse \rightarrow precession around z

- 180° pulse \rightarrow magnetization $\mathbf{M} \rightarrow -z$
- Before equilibrium, 90° pulse \rightarrow precession around z

- 180° pulse ightarrow magnetization $\mathbf{M}
 ightarrow -z$
- Before equilibrium, 90° pulse ightarrow precession around z
- Time diagram

Inversion recovery (2)

- Good choice of T_I suppresses tissue with specific T_1
- RF impuls when $M_z = 0 \rightarrow$ no signal

Signal amplitude after the 90° pulse after one repetition

$$\mathcal{S} \propto arrho (1-2\mathrm{e}^{-rac{T_I}{T_1}})$$

Signal amplitude after many repetitions

$$S \propto arrho \left(1-2 \mathrm{e}^{-rac{T_I}{T_1}}+\mathrm{e}^{-rac{T_R}{T_1}}
ight)$$

- S signal amplitude
- ϱ spin density
- T_R repetition time
- T_E echo time (between the 90° pulse and readout)
- T_1 spin-lattice relaxation time
- T_I inversion time (between the 90° and 180° pulses)

Excitation sequences

Free induction decay Spin echo

Positional encoding

Frequency encoding Slice selection Phase encoding Mathematics of Fourier encoding Quadrature detector Aliasing Reconstruction

Magnetic field gradient

$$f = \gamma B$$

- spatially dependent B
- \rightarrow spatially dependent f

Magnet isocenter

In the origin (0,0,0), field $B_z = B_0$

Frequency encoding

Magnetic field: $B_z = B_0 + xG_x$

Frequency: $f = \gamma (B_0 + xG_x)$

Excitation sequences

Free induction decay Spin echo

Positional encoding

Frequency encoding

Slice selection

Phase encoding Mathematics of Fourier encoding Quadrature detector Aliasing Reconstruction

Slice selection

- Gradient G_z together with RF pulse with frequency f
- Only spins at the resonance frequency are excited

 $\gamma(B_0+zG_z)=f$

Slice selection

- Gradient G_z together with RF pulse with frequency f
- Only spins at the resonance frequency are excited

 $\gamma(B_0+zG_z)=f$

RF pulse envelope shape

- Rectangular 90° pulse $rect(t) sin(2\pi ft)$
- ... sinc in the frequency domain (sinc(x) = sin(x)/x)

RF pulse envelope shape

- Rectangular 90° pulse $rect(t) sin(2\pi ft)$
- ... sinc in the frequency domain $(\operatorname{sinc}(x) = \operatorname{sin}(x)/x)$
- ullet ightarrow excitation profile is not rectangular

RF pulse envelope shape

- Rectangular 90° pulse $rect(t) sin(2\pi ft)$
- ... sinc in the frequency domain $(\operatorname{sinc}(x) = \operatorname{sin}(x)/x)$
- $\bullet \rightarrow$ excitation profile is not rectangular

- Rectangular 90° pulse $rect(t) sin(2\pi ft)$
- ... sinc in the frequency domain $(\operatorname{sinc}(x) = \operatorname{sin}(x)/x)$
- ullet ightarrow excitation profile is not rectangular

- Rectangular 90° pulse $rect(t) sin(2\pi ft)$
- ... sinc in the frequency domain $(\operatorname{sinc}(x) = \operatorname{sin}(x)/x)$
- ullet ightarrow excitation profile is not rectangular

- sinc-shaped 90° pulse sinc $\frac{t-t_0}{\tau} \sin(2\pi ft)$
- ... rectangle in the ve frequency domain

- sinc-shaped 90° pulse sinc $\frac{t-t_0}{\tau} \sin(2\pi ft)$
- ... rectangle in the ve frequency domain
- $\bullet \ \rightarrow \ {\rm rectangular} \ {\rm excitation} \ {\rm profile}$

- sinc-shaped 90° pulse sinc $\frac{t-t_0}{\tau} \sin(2\pi ft)$
- ... rectangle in the ve frequency domain
- ullet ightarrow rectangular excitation profile

- sinc-shaped 90° pulse sinc $\frac{t-t_0}{\tau} \sin(2\pi ft)$
- ... rectangle in the ve frequency domain
- ullet ightarrow rectangular excitation profile

- The shorter the RF pulse (in time)
- $\bullet\, \rightarrow$ the wider in the frequency domain
- ullet ightarrow the wider the excited slice
- ... and vice versa

Slice thickness:

$$d = \frac{2\Delta f_{\mathsf{RF}}}{\gamma G_{\mathsf{slice}}}$$

- The shorter the RF pulse (in time)
- $\bullet\, \rightarrow$ the wider in the frequency domain
- ullet ightarrow the wider the excited slice
- ... and vice versa

Slice thickness:

$$d = rac{2\Delta f_{\mathsf{RF}}}{\gamma G_{\mathsf{slice}}}$$

Typical values

- $G_z = 4 \,\mathrm{mT/m}$
- bandwidth $\Delta f = 1 \, \mathrm{kHz}$
- slice thickness 11.7 mm

Encoding gradients

Gradients of B_z

- Slice selection gradient
- Frequency encoding gradient

Encoding gradients

Gradients of B_z

- Slice selection gradient
- Frequency encoding gradient
- Phase encoding gradient

• In constant \mathbf{B} , the same f

• In constant \mathbf{B} , the same f

• In constant \mathbf{B} , the same f

- In constant **B**, the same f
- Gradient G_{arphi} on ightarrow different f

- In constant **B**, the same f
- Gradient G_{arphi} on ightarrow different f

- In constant **B**, the same f
- Gradient G_{arphi} on ightarrow different f

- In constant \mathbf{B} , the same f
- Gradient G_{arphi} on ightarrow different f
- Gradient G_{φ} off \rightarrow same f but different phase

- In constant \mathbf{B} , the same f
- Gradient G_{arphi} on ightarrow different f
- Gradient G_{φ} off \rightarrow same f but different phase

- In constant **B**, the same *f*
- Gradient G_{φ} on \rightarrow different f
- Gradient G_{φ} off \rightarrow same f but different phase

- In constant \mathbf{B} , the same f
- Gradient G_{arphi} on ightarrow different f
- Gradient G_{φ} off \rightarrow same f but different phase
- $\bullet \quad \rightarrow \quad \mathsf{phase \ encodes \ position}$

• Slice excitation

- Slice excitation
- After phase and frequency gradient
 - phase is a function of x
 - frequency is a function of y

- Slice excitation
- After phase and frequency gradient
 - phase is a function of x
 - frequency is a function of y

- Slice excitation
- After phase and frequency gradient
 - phase is a function of x
 - frequency is a function of y

- Slice excitation
- After phase and frequency gradient
 - phase is a function of x
 - frequency is a function of y

- Slice excitation
- After phase and frequency gradient
 - phase is a function of x
 - frequency is a function of y

- Slice excitation
- After phase and frequency gradient
 - phase is a function of x
 - frequency is a function of y

- Slice excitation
- After phase and frequency gradient
 - phase is a function of x
 - frequency is a function of y

• RF pulse

• Slice selection gradient

• Phase encoding gradient (before readout)

• Frequency encoding gradient (during readout)

• Readout

Multiple excitations

- To acquire a 2D slice 128 \sim 512 excitations are needed
- Repetition time T_R
- Phase encoding intensity \mathcal{G}_{ϕ} varies (\pm)

Multiple excitations

- To acquire a 2D slice 128 \sim 512 excitations are needed
- Repetition time T_R
- Phase encoding intensity \mathcal{G}_{ϕ} varies (\pm)

Multiple excitations

- To acquire a 2D slice 128 \sim 512 excitations are needed
- Repetition time T_R
- Phase encoding intensity \mathcal{G}_{ϕ} varies (\pm)

Multiple excitations

- To acquire a 2D slice $128\sim512$ excitations are needed
- Repetition time T_R
- Phase encoding intensity \mathcal{G}_{ϕ} varies (\pm)

Spin echo — optimized sequence

Time diagram:


```
Spin echo — optimized sequence (2)
```

Note:

- G_{ϕ} between 90° and 180° pulses \longrightarrow shorter T_E
- FID signal not used
- Desynchronization G_f together with G_ϕ ...
- $\ldots \longrightarrow$ maximum synchronization in the center of the readout window
- Sequence repeated for all G_{ϕ}

Inversion recovery — optimized sequence

Time diagram:

Inversion recovery — optimized sequence (2)

Note:

- All RF pulses are selective (applied together with G_s)
- G_ϕ cannot be after the first 180° pulse (no transversal magneticazation) \dots
- . . . applied after the 90° pulse
- starting from the 90° pulse = spin-echo sequence, including desynchronization G_f

Gradient orientation

Gradient along direction φ is a linear combination

$$G_x = G_f \sin \varphi$$

 $G_y = G_f \cos \varphi$

- Slice orientation can be arbitrary xy,yz,xz, or oblique
- All gradients change B_z . Using linear combination

- Slice orientation can be arbitrary xy,yz,xz, or oblique
- All gradients change B_z . Using linear combination
- Slice selection gradient perpendicular to the slice plane

- Slice orientation can be arbitrary xy,yz,xz, or oblique
- All gradients change B_z . Using linear combination
- Slice selection gradient perpendicular to the slice plane
- Phase encoding gradient in the slice plane

- Slice orientation can be arbitrary xy,yz,xz, or oblique
- All gradients change B_z . Using linear combination
- Slice selection gradient perpendicular to the slice plane
- Phase encoding gradient in the slice plane
- Frequency encoding

- Slice orientation can be arbitrary xy,yz,xz, or oblique
- All gradients change B_z . Using linear combination
- Slice selection gradient perpendicular to the slice plane
- Phase encoding gradient in the slice plane
- Frequency encoding gradient in the slice plane
- Gradient coils simultaneously on.

Excitation sequences

Free induction decay Spin echo

Positional encoding

Frequency encoding Slice selection Phase encoding **Mathematics of Fourier encoding** Quadrature detector Aliasing Reconstruction Spin packet signal

Received (complex) signal:

 $s(t) = M_x(t) + jM_y(t) \propto \mathrm{e}^{-j\phi(t)}$ with phase $\phi(t) = 2\pi f t$

substituting $f = \gamma B$:

$$\phi(t) = 2\pi\gamma Bt$$

Time-dependent magnetic field

Received (complex) signal:

 $s(t) \propto {
m e}^{-j\phi(t)}$

for stationary field *B*:

$$\phi(t) = 2\pi\gamma Bt$$

for time dependent field B(t):

$$\phi(t)=2\pi\gamma\int B(t)\,\mathrm{d}t$$

Effects of phase encoding

$$\phi(t) = 2\pi\gamma\int B(t)\,\mathrm{d}t$$
 $B(t) = B_0 + G_\phi(t)y, \qquad \phi(t) = 2\pi\gamma\int B_0 + G_\phi(t)y\,\mathrm{d}t$

phase shift due to a gradient :

$$\Delta\phi=2\pi\gamma y\int G_{\phi}(t)\,\mathrm{d}t$$

Effects of phase encoding (2)

Only the integral of $G_{\phi}(t)$ matters, not the shape:

For rectangular pulse G_{ϕ} with duration τ_{ϕ} :

$$\Delta \phi = 2\pi \gamma y G_{\phi} \tau_{\phi}$$

Phase and frequency encoding

After phase encoding :

$$egin{aligned} &s(t) \propto \mathrm{e}^{-2\pi j\gamma \int B_0 + G_\phi(t) y \, \mathrm{d}t} \ &s(t) \propto \mathrm{e}^{-2\pi j\gamma (B_0 t + G_\phi au_\phi y)} \end{aligned}$$

After phase and frequency encoding :

$$s(t) \propto {
m e}^{-2\pi j \gamma (B_0 t + G_\phi au_\phi y + G_f tx)}$$

Quadrature Detector

- Input: RF coil signal
- **Output:** signals correspoding to magnetization $M_{x'}$, $M_{y'}$
- x', y' is the rotating frame of reference

Quadrature Detector

- Input: RF coil signal
- **Output:** signals correspoding to magnetization $M_{x'}$, $M_{y'}$
- x', y' is the rotating frame of reference

Motivation

- Lower frequency, easier to process
- We can determine *phase*, not only *amplitude* (as in standard AM detector)
- Output is $s(t) = M_{x'} + jM_{y'}$ is considered a *complex signal*

Quadrature Detector

- Input: RF coil signal
- **Output:** signals correspoding to magnetization $M_{x'}$, $M_{y'}$
- x', y' is the rotating frame of reference

Motivation

- Lower frequency, easier to process
- We can determine *phase*, not only *amplitude* (as in standard AM detector)
- Output is $s(t) = M_{x'} + jM_{y'}$ is considered a *complex signal*

How?

• product mixer with a reference signal f₀

Product mixer Doubly Balanced Mixer (DBM)

• Input:
$$g_a = \cos(at)$$
, $g_b = \cos(bt)$

- Output: $g = g_a g_b = \frac{1}{2} \cos((a+b)t) + \frac{1}{2} \cos((a-b)t)$
- Signal $\cos((a+b)t)$ can be filtered (low-pass filter)
- Difference frequence signal $\cos((a-b)t)$

Product mixer Doubly Balanced Mixer (DBM)

• Input:
$$g_a = \cos(at)$$
, $g_b = \cos(bt)$

- Output: $g = g_a g_b = \frac{1}{2} \cos((a+b)t) + \frac{1}{2} \cos((a-b)t)$
- Signal $\cos((a+b)t)$ can be filtered (low-pass filter)
- Difference frequence signal $\cos((a-b)t)$
- For a 'complex' signal $x \cos(at) + y \sin(at)$, multiplication with $\cos(bt)$ and $\sin(bt)$ recovers x and y.

Quadrature detector (2)

Frequency encoding Slice selection Phase encoding Mathematics of Fourier enc

Quadrature detector in Fourier imaging

Signal

$$s(t) \propto {
m e}^{-2\pi j \gamma (B_0 t + G_\phi au_\phi y + G_f tx)}$$

Quadrature demodulation with $f_0 = \gamma B_0$ is like using the rotating coordinate system:

$$s(t) \propto {
m e}^{-2\pi j \gamma (G_\phi au_\phi y + G_f tx)}$$

k-space

Demodulated signal

$$s(t) \propto {
m e}^{-2\pi j \gamma (G_\phi au_\phi y + G_f tx)}$$

Substition

$$k_x(t) = \gamma \int G_f(t) dx = \gamma G_f t$$
 $k_y(t) = \gamma \int G_\phi(t) dx = \gamma G_\phi \tau_\phi$

 $s(t) \propto \mathrm{e}^{-2\pi j (k_x(t)x+k_y(t)y)}$

```
k-space, slice signal
```

Demodulated signal from one point:

$$s(t) \propto \mathrm{e}^{-2\pi j (k_{\mathrm{x}}(t) \mathrm{x} + k_{\mathrm{y}}(t) \mathrm{y})}$$

Signal from the whole slice:

$$egin{aligned} s(t) \propto \int_{(x,y)\in ext{slice}} &
ho(x,y) ext{e}^{-2\pi j(k_x(t)x+k_y(t)y)} \, ext{d}x ext{d}y \ & s(t) = S(k_x(t),k_y(t)) \end{aligned}$$

where $\rho(x, y)$ is the spin density.

Received signal $S(k_x, k_y)$ is a 2D Fourier transform of $\rho(x, y)$

k-space example

- $S(k_x, k_y)$ is a 2D Fourier transform of $\rho(x, y)$.
- Trajectory $(k_x(t), k_y(t))$ controlled by gradients
- We sample $S(k_x, k_y)$ at points $(k_x(t), k_y(t))$ to get samples from a 1D signal $s(t) = (k_x(t), k_y(t))$.

k-space sampling

k-space acquisition line by line One line — one excitation

Other trajectories are possible and often used (e.g. spiral)

Field of view (FOV)

• Sampling step in *k*-space

$$\Delta k_x = \gamma G_f t_{samp}$$
 $\Delta k_y = \gamma \Delta G_\phi \tau_\phi$

- Shannon/Nyquyist/Whittaker/Kotelnikov sampling theorem \rightarrow $\,$ imaged object must be smaller than

$$\begin{aligned} \mathsf{FOV}_{x} &= \frac{1}{\Delta k_{x}} = \frac{1}{\gamma G_{f} t_{\mathsf{samp}}} \\ \mathsf{FOV}_{y} &= \frac{1}{\Delta k_{y}} = \frac{1}{\gamma \Delta G_{\phi} \tau_{\phi}} \end{aligned}$$

(quadrature detector \rightarrow complex sampling \rightarrow factor 2)

• if the object is larger, aliasing (folded object)

Aliasing

(Wrap Around Effect)

- Part of the object outside of FOV will appear elsewhere
- Object too big, FOV too small

Aliasing (2)

- Aliasing in frequency encoding direction can be suppressed by:
 - Using higher f_{samp} , e.g. 2 MHz instead of 16 kHz. This reduces SNR.
 - Suppressing signal outside of FOV (e.g. using a smaller coil)
- Aliasing in phase encoding direction can be suppressed by:
 - reducing $\Delta k_y \longrightarrow$ increase of the number of phase encoding steps (longer acquisition) or decreasing spatial resolution
 - Suppressing signal outside of FOV (e.g. using a smaller coil)
 - Changing the phase encoding direction

• One active pixel

Frequency Encoding Direction

• 10 excitations with different G_{ϕ}

• FT along x

• Finer sampling

Phase Encoding Direction

• FT along y

Slice reconstruction

• original

Frequency Encoding Direction

Visualization

• Show amplitude of the 2D FT signal as a grayscale image

