X-Rays

Jan Kybic, André Sopczak

Czech Technical University in Prague
http://cmp.felk.cvut.cz/~kybic, kybic@fel.cvut.cz
http://cern.ch/sopczak, andre.sopczak@cvut.cz

2005-2024


Overview

W

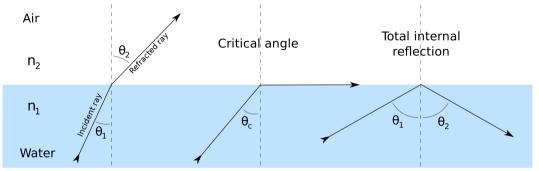
- Fundamentals of X-rays
 - Invention
 - Electromagnetic spectrum
 - Particles and waves
 - Chest X-rays radiography machine
- Generation of X-rays
 - X-ray source
 - Beam focusing
 - Penumbra
 - X-ray tube
 - X-ray parameters / spectrum
- Interaction of X-rays with mstter
 - Coherent scattering
 - Photoelectric effect
 - Compton scattering
 - Attenuation

- Detection of X-rays
 - Collimator
 - Antiscatter grid
 - Intensifier screen
 - ► Film
 - Charge Coupled Device (CCD)
 - Medipix/Timepix (MPX/TPX)
- Imaging and diagnostic methods
 - X-ray image characteristics
 - X-ray contrast agents
 - X-ray angiography
 - ► Digital Subtraction Angiography
 - Intra-operative imaging
 - Dual-Energy Imaging
 - Mamography
- Pros and Cons

Invention, Nobel Prize in Physics 1901

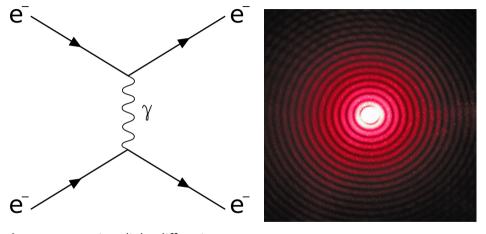
1895, W. Röntgen

B. Röntgen hand



modern hand

Electromagnetic spectrum


Energy (eV)	Frequency (Hz)		Wavelength (m)
4×10^{-11}	104		104
4×10^{-10}	105	AM radio waves	10^3
4×10^{-9}	106 —		102
4×10^{-8}	107	Short radio waves	101
		FM radio waves and TV	
4×10^{-7}	108		10°
4×10^{-6}	109		10^{-1}
4×10^{-5}	1010	Microwaves and radar	10^{-2}
4×10^{-4}	1011		10^{-3}
4×10^{-3}	1012	Infrared light	10^{-4}
4×10^{-2}	1013		10-5
4×10^{-1}	1014	Visible light	10^{-6}
4×10^{0}	1015	Ultraviolet light	10^{-7}
4×10^{1}	1016		10^{-8}
4×10^{2}	1017		10^{-9}
4×10^{3}	1018	X-ray	10^{-10}
4×10^{4}	1019	· .	10-11
4×10^{5}	10^{20}		10^{-12}
4×10^{6}	10^{21}	Gamma ray	-10^{-13}
4×10^{7}	10 ²²	Cosmic ray	10^{-14}

Particles and waves

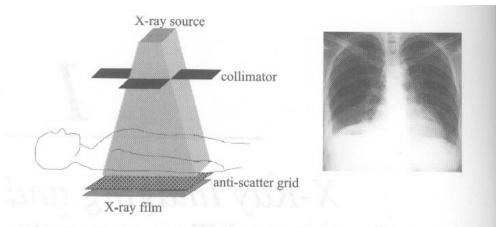
- refraction, reflection = waves
- lacktriangle photoelectric effect, ionizing radiation (above 10 eV, $\lambda=120\,\mathrm{nm})=\mathrm{particles}$
- photons with energy E=hf, $h\approx 6.6\cdot 10^{-34}\,\mathrm{J\cdot s}\approx 4.1\cdot 10^{-15}\,\mathrm{eV\cdot s}$ $1\,\mathrm{eV}\approx 1.6\cdot 10^{-19}\,\mathrm{J}$ $c=f\lambda\approx 3\cdot 10^8\,\mathrm{m/s}$ $\lambda=1\,\mathrm{nm}$ \approx $1.2\cdot 10^3\,\mathrm{eV}=1.2\,\mathrm{keV}$

Particles and waves (2)

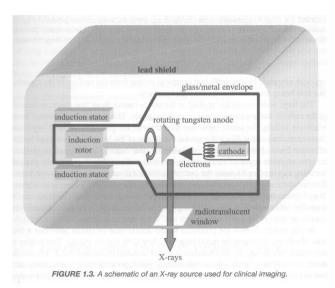
▶ electron scattering, light diffraction

Chest X-rays radiography machine

Chest X-rays radiography machine


Chest X-ray

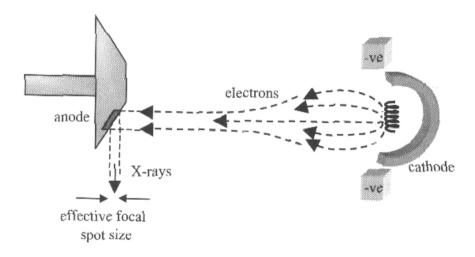
Chest X-ray



X-ray scanner

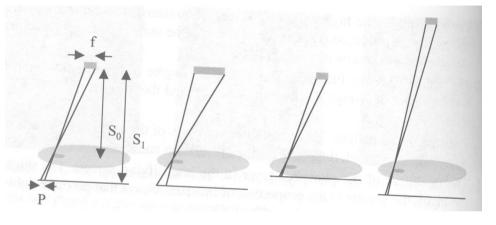
FIGURE 1.1. (Left) The basic setup for X-ray imaging. The collimator restricts the beam of X-rays so as to irradiate only the region of interest. The antiscatter grid increases tissue contrast by reducing the number of detected X-rays that have been scattered by tissue. (Right) A typical planar X-ray radiograph of the chest, in which the highly attenuating regions of bone appear white.

X-ray source


ightharpoonup 15 \sim 150 kV, rectified AC

- ightharpoonup 50 \sim 400 mA anode current
- ▶ tungsten wire $(200 \, \mu \text{m})$ cathode, heated to $\sim 2200^{\circ}\text{C}$
- anode rotates at 3000 rpm
- molybdenum or tungsten-rhenium anode
- thermoionic emission

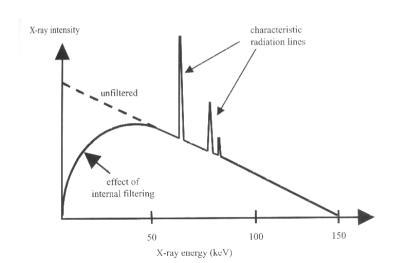
X-ray tube



Beam focusing

 \blacktriangleright Focal spot size 0.3 mm $\sim 1.2\,\text{mm}$

Penumbra (Latin paene "almost", umbra "shadow")

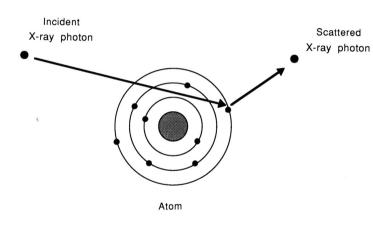


- geometric unsharpness
- small focal spot
- ► large distance

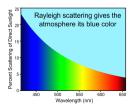
X-ray parameters

Intensity: $[W/m^2]$: $\propto U^2I$

Spectrum: (150 kV)

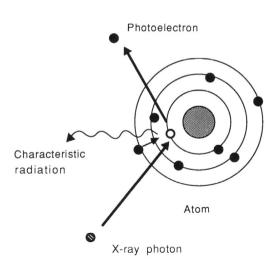


- Bremsstrahlung
- Characteristic radiation
- ► Filter low-energy rays that would not penetrate the patient
 AI sheets. (skin dose reduced 80×)

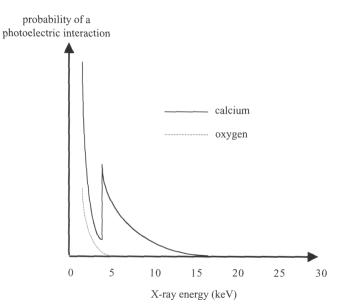

Interaction between X-rays and matter

- ► Coherent scattering
- Photoelectric effect
- Compton scattering
- ► (Pair production)
- (Photodisintegration)

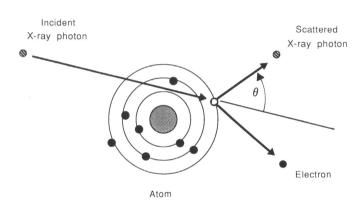
Coherent (Rayleigh) scattering



- ▶ Photon → photon, almost same frequency
- Low-energy radiation
- Probability $\propto Z_{\rm eff}^{8/3}$
 - Z_{eff} effective atomic number
 - muscle $Z_{\rm eff} \approx 7.4$, bone $Z_{\rm eff} \approx 20$
- ► About 5 ~ 10 % of tissue interactions

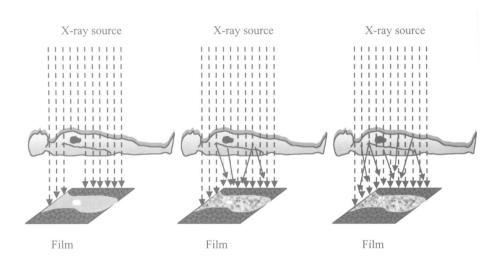

Photoelectric effect

A.Einstein Nobel Prize 1921 "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect"



- ► High-energy radiation
- ▶ Photon →
 characteristic
 radiation,
 photo-electron /
 Auger electron,
 positive ion
- ▶ → ionization
- Desirable, X-ray photon completely absorbed

Photoelectric interaction wrt E


Compton scattering

$$E_{\text{scatt}} = \frac{E_{\text{inc}}}{1 + \frac{E_{\text{inc}}}{m c^2} (1 - \cos \theta)}$$

- ▶ photon → photon + electron, ionization
- most frequent in X-ray imaging, especially for high E_{inc}
- ▶ independent to atomic number → small contrast
- background noise, health hazard

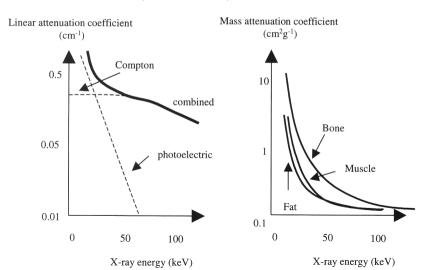
Effects of Compton scattering

Attenuation

$$dI = -\mu I dx \qquad \mu = n\sigma$$

$$I_x = I_0 e^{-\mu x}$$

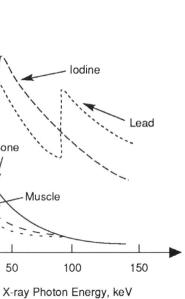
 μ — linear attenuation coefficient Half-value layer $\log 2/\mu \approx 0.693/\mu$


TABLE 1.2. The Half-Value Layer (HVL) for Muscle and Bone as a Function of the Energy of the Incident X-Rays

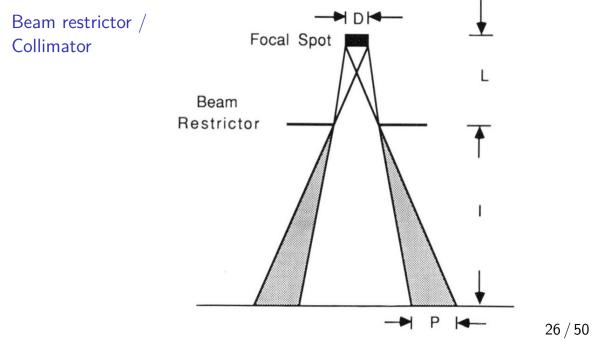
X-ray energy (keV)	HVL, muscle (cm)	HVL, bone (cm)
30	1.8	0.4
50	3.0	1.2
100	3.9	2.3
150	4.5	2.8

Mass attenuation coefficient μ/ρ Attenuation decreases with energy, $\mu \propto E^{-3}$

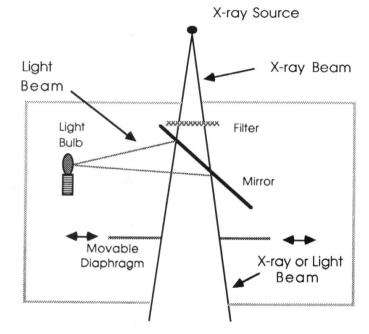
Attenuation factors wrt E


$$\mu = \mu_{\text{photoel}} + \mu_{\text{Compton}} + \mu_{\text{coherent}}$$

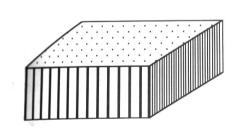
Attenuation wrt E(2)100 Mass-Attenuation coefficient, cm²/g lodine 10 Bone


Fat

0.1



- Muscle

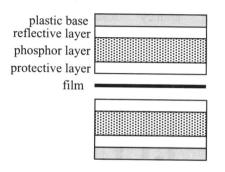

50

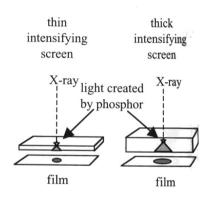
Beam restrictor / Collimator (2)

Antiscatter grid

primary scattered X-ray X-rays

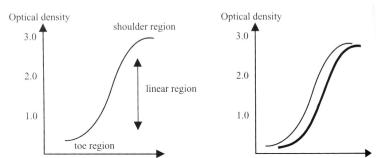
 $\mathsf{Bucky}\;\mathsf{factor} = \mathsf{dose}\;\mathsf{increase}$


Antiscatter grid — example



 $3\,\text{mAs}$ antiscatter grid, $10\,\text{mAs}$

Intensifier screen



- ► 50× sensitivity increase
- thickness; trade-off resolution/sensitivity
- ► Gd green, La blue, Csl, ZnS
- ▶ efficiency 20 %

Film

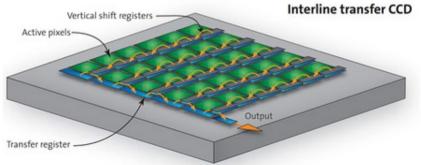
- monochromatic (sensitive to blue), ortochromatic (sens. to green)
- \blacktriangleright double emulsion (10 μm), silver bromide in gelatin
- ▶ blackening, optical density (OD) $\log_{10}(I_i/I_t)$
- ► contrast $\gamma = \frac{OD_2 OD_1}{\log_{10} E_2 \log_{10} E_1}$, slope of the linear region
- latitude (dynamic range), range of useful exposure values
- grain size sensitivity/resolution trade-off
- ▶ mixed-particle size → high contrast
- automatic exposure control, ionization chamber

Digital Sensors

- ► Computed radiography (CR)
 - ► Phosphor-based storage plate
 - chemical storage (oxidation of Eu)
 - laser scanning, light erasure

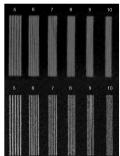
Digital Sensors

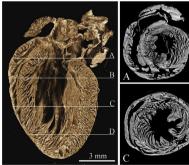
- Computed radiography (CR)
 - Phosphor-based storage plate
 - chemical storage (oxidation of Eu)
 - laser scanning, light erasure
- Digital radiography (DR)
 - ► flat-panel detectors (FPD)
 - ▶ thin-film transistor (TFT) array
 - ► *CsI* scintillator → photo-diode/transistor
 - ightharpoonup 41 imes 41 cm, 2048 imes 2048 pixels
 - better dynamic range, quantum efficiency, and latitude wrt film

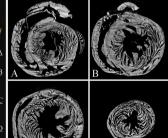

Digital Sensors

- Computed radiography (CR)
 - Phosphor-based storage plate
 - chemical storage (oxidation of Eu)
 - laser scanning, light erasure
- Digital radiography (DR)
 - flat-panel detectors (FPD)
 - thin-film transistor (TFT) array
 - ► *CsI* scintillator → photo-diode/transistor
 - $ightharpoonup 41 \times 41$ cm, 2048×2048 pixels
 - better dynamic range, quantum efficiency, and latitude wrt film
- ► Charge Coupled Device (CCD), Willard S. Boyle and George E. Smith, Nobel Prize 2009 "for the invention of an imaging semiconductor circuit the CCD sensor"
 - ▶ Phosphor screen, fiber-optic cables, CCD sensor
 - good sensitivity, low noise
 - CCD X-ray detectors have replaced photographic film as the detector of choice for diagnostic imaging, allowing digital copies of images to be captured and stored much more quickly.

CCD detectors

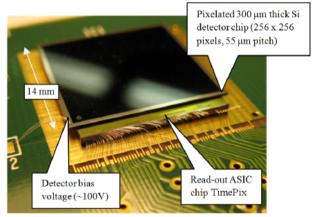





Medipix/Timepix detectors Radiation Measurements, https://doi.org/10.1016/j.radmeas.2019.04.007

- ▶ direct detection (no light conversion), on-chip processing, since 1990 in CERN
- pixel counters, energy measurement, arrival time, particle trace (type)
- \blacktriangleright good spatial resolution (55 μ m), 256 \times 256 pixels, up to 10 \times 10 chips
- ▶ new imaging methods (e.g. Compton camera two stacked detectors)
- high-price





Medipix/Timepix detectors (2)

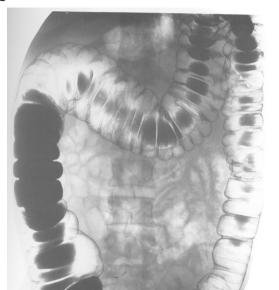
CERN, Mars Bioimaging, medipix-3 sensor measures attenuation of specific wavelengths of the X-rays as they pass through different materials.

X-ray image characteristics

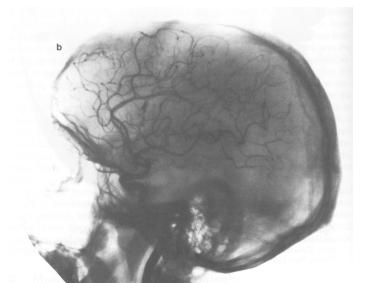
► Signal-to-noise ratio (SNR)

- Discrete photons, Poisson distribution
- $\mu = \lambda, \ \sigma^2 = \lambda$
- ► SNR $\propto \sqrt{\lambda}$, λ intensity/photons per area/pixel
- ightharpoonup exposure time and current, SNR $\propto \sqrt{TI}$
- $lackbox{lack}$ higher $U\longrightarrow$ more high-energy rays \longrightarrow more incident photons \longrightarrow better SNR
- ightharpoonup X-ray filtering \longrightarrow smaller SNR
- patient size, antiscatter grid, intensifying screen, film

X-ray image characteristics

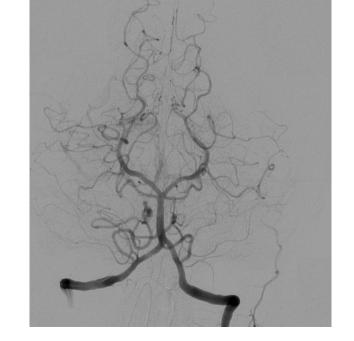

- ► Signal-to-noise ratio (SNR)
- Spatial resolution
 - point spread function (PSF), line spread function (LSF), edge spread function (ESF), modulation transfer function (MTF)
 - thickness of the intensifier screen
 - speed of the X-ray film
 - geometric unsharpness
 - ightharpoonup magnification factor (patient \longrightarrow film). Place patient as close as possible.

X-ray image characteristics

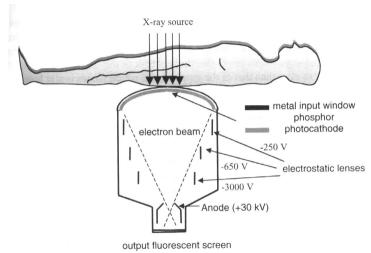

- ► Signal-to-noise ratio (SNR)
- ► Spatial resolution
- Contrast-to-noise ratio

X-ray contrast agents

▶ barium sulfate, gastrointestinal tract



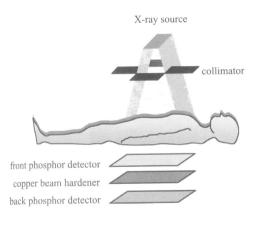
X-ray angiography (visualize the inside of blood vessels and organs of the body)



- Stenosis, clotting of arteries
- lodine-based contrast agent (danger of kidney failure)
- Time series
- Excellent resolution (100 μm)
- Digital subtraction angiography (DSA)

Digital
Subtraction
Angiography
(DSA)
example

Fluoroscopy / Intra-operative imaging

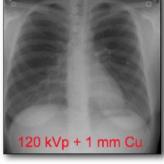


▶ Now a FPD/CCD instead of the fluorescent screen.

Fluoroscopy example

Dual-Energy Imaging

"bone image"


"soft-tissue image"

- Two exposures
- ► Two detectors
- ▶ Beam hardening

Dual-energy example

Mamography

X-ray Advantages / disadvantages

- Advantages
 - Widely used and available
 - Experts available
 - ► High-spatial resolution
 - Excellent imaging of hard tissues (bones)
- Disadvantages
 - Radiation exposure
 - ▶ Difficulty in imaging soft-tissues
 - 2D projection, hidden parts

New trends

- CCD/Medipix/Timepix sensors replace film
- ▶ higher sensitivity, faster exposure, lower dose
- dynamic imaging
- ► CT