Lecture 4: Reinforcement learning

Viliam Lisý \& Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng. Czech Technical University in Prague
viliam.lisy@fel.cvut.cz

March, 2022

Definiton

Wikipedia: Reinforcement learning is "concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward"

The book: "Reinforcement learning is learning what to do - how to map situations to actions - so as to maximize a numerical reward signal."

Me : Learning to choose actions to optimize rewards based on experience - trial and errors.

Motivation

Success stories:

Can solve a diverse set of problems!
Why is all this in simutlations?
RL currently needs a huge amount of experience, which is easier to obtain in simualtion

Motivation

Minds are sensori-motor information processors

the mind's job is to predict and control its sensory signals

Taken from R. Sutton's slides.

Motivation

Reinforcement learning is more autonomous learning

- Learning that requires less input from people
- Al that can learn for itself, during its normal operation

Taken from R. Sutton's slides (and many following are adaptations as well).

Remember MDP

Standard model for Reinforcement Learning problems

- S - states
- R - rewards
- A - actions

- Discrete steps $t=0,1,2, \ldots$
- Environment dynamics

Source: Waldoalvarez @ wikimedia

$$
p\left(s^{\prime}, r \mid s, a\right) \leftarrow \operatorname{Pr}\left\{S_{t}=s^{\prime}, R_{t}=r \mid S_{t-1}=s, A_{t-1}=a\right\}
$$

Single state MDP: Multi-armed Bandit Problem

All actions a_{1}, \ldots, a_{n} lead back to the single state of MDP.

A simple case with many of the RL's fundamental problems.

Why is it called Multi-Armed Bandit Problem

Example problem

Action 1: Reward is always 8
Expected reward: $q_{*}(1)=8$

Action 2: 88% chance of $0,12 \%$ chance of 100

Expected reward: $q_{*}(2)=12$

Action 3: Uniformly random between -10 and 35
Expected reward: $q_{*}(3)=12.5$

Action 4: a third 0 , a third 20, and a third from 8-18
Expected reward: $q_{*}(4)=13 / 3+20 / 3=11$

Multi-armed Bandit Problem

On each of a sequence of time steps, $t=1,2, \ldots, T$ you choose an action A_{t} from k possibilities, and receive a real-valued reward R_{t}

The reward depends only on the action taken; it is indentically, independently distributed (i.i.d.):

$$
q_{*}(a) \doteq \mathbb{E}\left[R_{t} \mid A_{t}=a\right], \forall a \in\{1, \ldots, k\}
$$

These true values are unknown. The distribution is unknown.
Nevertheless, you must maximize your total reward
You must both try actions to learn their values (explore), and prefer those that appear best (exploit)

Suppose you form estimates

$$
Q_{t}(a) \approx q_{*}(a), \forall a \quad \text { action-value estimates }
$$

Define the greedy action at time t as

$$
A_{t}^{*} \doteq \arg \max _{a} Q_{t}(a)
$$

If $A_{t}=A_{t}^{*}$ then you are exploiting
If $A_{t} \neq A_{t}^{*}$ then you are exploring
You cant do both, but you need to do both
You can never stop exploring, but maybe you should explore less with time. Or maybe not.

Action-Value Methods

Methods that learn action-value estimates and nothing else

For example, estimate action values as sample averages:
$Q_{t}(a) \doteq \frac{\text { sum of rewards when } a \text { taken prior to } t}{\text { number of times } a \text { taken prior to } t}=\frac{\sum_{i=1}^{t-1} R_{i} \cdot \mathbf{1}_{A_{i}=a}}{\sum_{i=1}^{t-1} \mathbf{1}_{A_{i}=a}}$

The sample-average estimates converge to the true values
If the action is taken an infinite number of times

$$
\lim _{N_{t}(a) \rightarrow \infty} Q_{t}(a)=q_{*}(a)
$$

Where $N_{t}(a)$ is the number of times action a has been taken by time t.

In greedy action selection, you always exploit
In ϵ-greedy, you are usually greedy, but with probability ϵ you instead pick an action at random (possibly the greedy action again)

This is perhaps the simplest way to balance exploration and exploitation

Algorithm ϵ-Greedy:
Initialize, for $a=1$ to k :

$$
\begin{aligned}
& Q(a) \leftarrow 0 \\
& N(a) \leftarrow 0
\end{aligned}
$$

Repeat forever:

```
\(A \leftarrow\left\{\begin{array}{lll}\arg \max _{a} Q(a) & \text { with probability } 1-\varepsilon & \text { (breaking ties randomly) } \\ \operatorname{a} \text { random action } & \text { with probability } \varepsilon & \end{array}\right.\)
\(R \leftarrow \operatorname{bandit}(A)\)
\(N(A) \leftarrow N(A)+1\)
\(Q(A) \leftarrow Q(A)+\frac{1}{N(A)}[R-Q(A)]\)
```


One Task from the 10 -armed Testbed

ϵ-Greedy Methods on the 10 -Armed Testbed

Averaging \rightarrow Learning Rule

To simplify notation, let us focus on one action

$$
Q_{n} \doteq \frac{R_{1}+R_{2}+\cdots+R_{n-1}}{n-1}
$$

How can we do this incrementally (without storing all the rewards)?
Could store a running sum and count (and divide), or equivalently:

$$
Q_{n+1}=Q_{n}+\frac{1}{n}\left[R_{n}-Q_{n}\right]
$$

This is a standard form for learning/update rules:
NewEstimate \leftarrow OldEstimate + StepSize [Target - OldEstimate]

Derivation of incremental update

$$
\begin{aligned}
Q_{n} & \doteq \frac{R_{1}+R_{2}+\cdots+R_{n-1}}{n-1} \\
Q_{n+1} & =\frac{1}{n} \sum_{i=1}^{n} R_{i} \\
& =\frac{1}{n}\left(R_{n}+\sum_{i=1}^{n-1} R_{i}\right) \\
& =\frac{1}{n}\left(R_{n}+(n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i}\right) \\
& =\frac{1}{n}\left(R_{n}+(n-1) Q_{n}\right) \\
& =\frac{1}{n}\left(R_{n}+n Q_{n}-Q_{n}\right) \\
& =Q_{n}+\alpha_{n}\left[R_{n}-Q_{n}\right],
\end{aligned}
$$

Standard stochastic approximation convergence conditions

To assure convergence with probability 1 :

$$
\begin{array}{ll}
\quad \sum_{n=1}^{\infty} \alpha_{n}(a)=\infty \quad \text { and } & \sum_{n=1}^{\infty} \alpha_{n}^{2}(a)<\infty \\
\text { e.g., } \alpha_{n} \doteq \frac{1}{n} & \\
\text { not } \alpha_{n} \doteq \frac{1}{n^{2}} & \\
& \text { if } \alpha_{n} \doteq n^{-p}, p \in(0.5,1] \\
& \text { optimal rate } O(1 / \sqrt{n})
\end{array}
$$

Tracking a Non-stationary Problem

Suppose the true action values change (slowly) over time then we say that the problem is nonstationary (not i.i.d.)

In this case, sample averages are not a good idea (Why?)
Better is an "exponential, recency-weighted average":

$$
\begin{aligned}
Q_{n+1} & \doteq Q_{n}+\alpha\left[R_{n}-Q_{n}\right] \\
& =(1-\alpha)^{n} Q_{1}+\sum_{i=1}^{n} \alpha(1-\alpha)^{n-i} R_{i}
\end{aligned}
$$

where α is a constant step-size parameter, $\alpha \in(0,1]$

There is bias due to Q_{1} that becomes smaller over time

Optimistic Initial Values

The estimates so far depend on $Q_{1}(a)$, i.e., they are biased. So far we have used $Q_{1}(a)=0$
Suppose we initialize the action values optimistically $\left(Q_{1}(a)=5\right)$,

Upper Confidence Bound (UCB) action selection

A clever way of reducing exploration over time
Estimate an upper bound on the true action values
Select the action with the largest (estimated) upper bound

$$
A_{t} \doteq \arg \max _{a}\left[Q_{t}(a)+c \sqrt{\frac{\log t}{N_{t}(a)}}\right]
$$

Demo

https://pavlov.tech/2019/03/02/animated-multi-armed-bandit-policies/

Comparison of Bandit Algorithms

Bandits Summary

These are all simple methods

- but they are complicated enoughwe will build on them
- we should understand them completely
- there is a lot of theory, e.g., upper/lower bounds
- there are still open questions

Our first algorithms that learn from evaluative feedback

- and thus must balance exploration and exploitation

Our first algorithms that appear to have a goal

- that learn to maximize reward by trial and error

Back to MDPs

Standard model for Reinforcement Learning problems

- S - states
- R - rewards
- A - actions

- Discrete steps $t=0,1,2, \ldots$
- Environment dynamics

Source: Waldoalvarez @ wikimedia

$$
p\left(s^{\prime}, r \mid s, a\right) \leftarrow \operatorname{Pr}\left\{S_{t}=s^{\prime}, R_{t}=r \mid S_{t-1}=s, A_{t-1}=a\right\}
$$

Policy at step t, denoted π_{t}, maps from states to actions.

$$
\pi_{t}(a \mid s)=\text { probability that } A_{t}=a \text { when } S_{t}=s
$$

Special case are deterministic policies.

$$
\pi_{t}(s)=\text { the action taken with prob }=1 \text { when } S_{t}=s
$$

- Reinforcement learning methods specify how the agent changes its policy as a result of experience
- Roughly, the agents goal is to get as much reward as it can over the long run.

Suppose the sequence of rewards after step t is:

$$
R_{t+1}, R_{t+2}, R_{t+3}, \ldots
$$

What do we maximize?

At least three cases, but in all of them, we seek to maximize the expected return, $\mathbb{E} G_{t}$, on each step t.

- Total reward, $G_{t}=$ sum of all future reward in the episode
- Discounted reward, $G_{t}=$ sum of all future discounted reward
- Average reward, $G_{t}=$ average reward per time step

Episodic Tasks

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple total reward:

$$
G_{t}=R_{t+1}+R_{t+2}+\cdots+R_{T}
$$

where T is a final time step at which a terminal state is reached, ending an episode.

Continuing Tasks

Continuing tasks: interaction does not have natural episodes, but just goes on and on...

In this class, for continuing tasks we will always use discounted return:

$$
G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+}+\cdots=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}
$$

where $0 \leq \gamma \leq 1$, is the discount rate.
shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted
Typically, $\gamma=0.9$

An Example: Pole Balancing

Avoid failure: the pole falling beyond a critical angle or the cart hitting end of track
(image from Ma\&Likharev 2007)
As an episodic task where episode ends upon failure: reward $=+1$ for each step before failure
\Rightarrow return $=$ number of steps before failure
As a continuing task with discounted return: reward $=-1$ upon failure; 0 otherwise
\Rightarrow return $=-\gamma^{k}$, for k steps before failure
In either case, return is maximized by avoiding failure for as long as possible.

A Trick to Unify Notation for Returns

- In episodic tasks, we number the time steps of each episode starting from zero.
- We usually do not have to distinguish between episodes, so instead of writing for states in episode j , we write just S_{t}
- Think of each episode as ending in an absorbing state that always produces reward of zero:

- We can cover all cases by writing $G_{t}=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$, where γ can be 1 only if a zero rewards absorbing state is always reached.

What about average reward?

Tasks that continue forever, but later rewards are not substantially less important than the earlier.

- Patrolling an area against patient intruders
- Controlling vibrations of an airplane

Not very common in AI problems.

RL is a set of methods to learn a policy from an interaction with environment

The goal is to maximise return derived from immediate rewards

The simplest RL problem is the multi-armed bandit problem

- exploration vs. exploitation problem
- ϵ-greedy, optimistic initialisation, UCB

Canonical model of RL problems is MDP

