Lecture 4: Reinforcement learning

Viliam Lisý & Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

March, 2022

Definiton

Wikipedia: Reinforcement learning is "concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward"

The book: "Reinforcement learning is learning what to do – how to map situations to actions – so as to maximize a numerical reward signal."

Me: Learning to choose actions to optimize rewards based on experience – trial and errors.

Motivation

Success stories:

Can solve a diverse set of problems!

Why is all this in simutlations? RL currently needs a huge amount of experience, which is easier to obtain in simualtion

Minds are sensori-motor information processors motor signals objects walls World battery people charger sensory signals corners the mind's job is to predict and control its sensory signals

Taken from R. Sutton's slides.

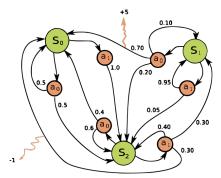
Reinforcement learning is more autonomous learning

- Learning that requires less input from people
- Al that can learn for itself, during its normal operation

Taken from R. Sutton's slides (and many following are adaptations as well).

Remember MDP

Standard model for Reinforcement Learning problems



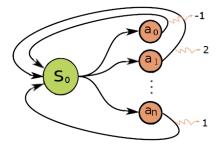
- \bullet S states
- R rewards
- A actions
- Discrete steps $t = 0, 1, 2, \dots$
- Environment dynamics

Source: Waldoalvarez @ wikimedia

$$p(s', r|s, a) \leftarrow Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$$

Single state MDP: Multi-armed Bandit Problem

All actions a_1, \ldots, a_n lead back to the single state of MDP.



A simple case with many of the RL's fundamental problems.

Why is it called Multi-Armed Bandit Problem

Example problem

Action 1: Reward is always 8 Expected reward: $q_*(1) = 8$

Action 2: 88% chance of 0, 12% chance of 100 Expected reward: $q_*(2) = 12$

Action 3: Uniformly random between -10 and 35

Expected reward: $q_*(3) = 12.5$

Action 4: a third 0, a third 20, and a third from 8-18

Expected reward: $q_*(4) = 13/3 + 20/3 = 11$

Multi-armed Bandit Problem

On each of a sequence of time steps, t = 1, 2, ..., T you choose an action A_t from k possibilities, and receive a real-valued reward R_t

The reward depends only on the action taken; it is indentically, independently distributed (i.i.d.):

$$q_*(a) \doteq \mathbb{E}[R_t|A_t=a], \forall a \in \{1,\ldots,k\}$$

These true values are **unknown**. The distribution is **unknown**.

Nevertheless, you must maximize your total reward

You must both try actions to learn their values (explore), and prefer those that appear best (exploit)

The Exploration/Exploitation Dilemma

Suppose you form estimates

$$Q_t(a) \approx q_*(a), \forall a$$
 action-value estimates

Define the **greedy action** at time t as

$$A_t^* \doteq \arg\max_a Q_t(a)$$

If $A_t = A_t^*$ then you are exploiting If $A_t \neq A_t^*$ then you are exploring

You cant do both, but you need to do both

You can never stop exploring, but maybe you should explore less with time. Or maybe not.

Action-Value Methods

Methods that learn action-value estimates and nothing else

For example, estimate action values as sample averages:

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbf{1}_{A_i = a}}{\sum_{i=1}^{t-1} \mathbf{1}_{A_i = a}}$$

The sample-average estimates converge to the true values If the action is taken an infinite number of times

$$\lim_{N_t(a) o\infty}Q_t(a)=q_*(a)$$

Where $N_t(a)$ is the number of times action a has been taken by time t.

ϵ-Greedy Action Selection

In greedy action selection, you always exploit

In ϵ -greedy, you are usually greedy, but with probability ϵ you instead pick an action at random (possibly the greedy action again)

This is perhaps the simplest way to balance exploration and exploitation

Algorithm ϵ -Greedy:

Initialize, for
$$a = 1$$
 to k :
 $Q(a) \leftarrow 0$
 $N(a) \leftarrow 0$

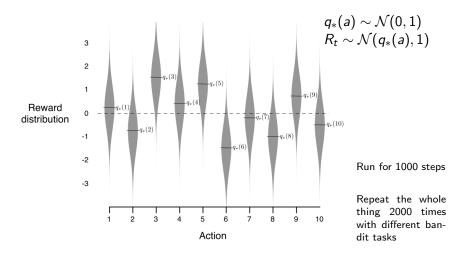
Repeat forever:

$$A \leftarrow \begin{cases} \arg\max_a Q(a) & \text{with probability } 1 - \varepsilon \\ \text{a random action} & \text{with probability } \varepsilon \end{cases}$$
 (breaking ties randomly)
$$R \leftarrow bandit(A)$$

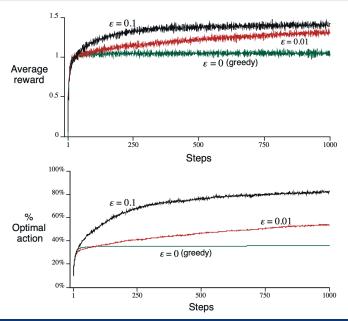
$$N(A) \leftarrow N(A) + 1$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]$$

One Task from the 10-armed Testbed



ϵ-Greedy Methods on the 10-Armed Testbed



Averaging \rightarrow Learning Rule

To simplify notation, let us focus on one action

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

How can we do this incrementally (without storing all the rewards)?

Could store a running sum and count (and divide), or equivalently:

$$Q_{n+1} = Q_n + \frac{1}{n} \left[R_n - Q_n \right]$$

This is a standard form for learning/update rules:

 $NewEstimate \leftarrow OldEstimate + StepSize [Target - OldEstimate]$

Derivation of incremental update

$$Q_{n} \doteq \frac{R_{1} + R_{2} + \dots + R_{n-1}}{n-1}$$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right)$$

$$= \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right)$$

$$= Q_{n} + \alpha_{n} \left[R_{n} - Q_{n} \right],$$

Standard stochastic approximation convergence conditions

To assure convergence with probability 1:

$$\sum_{n=1}^{\infty} \alpha_n(a) = \infty$$
 and $\sum_{n=1}^{\infty} \alpha_n^2(a) < \infty$

e.g.,
$$\alpha_n \doteq \frac{1}{n}$$

not $\alpha_n \doteq \frac{1}{n^2}$

if
$$\alpha_n \doteq n^{-p}, p \in (0.5, 1]$$
 then convergence is at the optimal rate $O(1/\sqrt{n})$

Tracking a Non-stationary Problem

Suppose the true action values change (slowly) over time then we say that the problem is **nonstationary** (not i.i.d.)

In this case, sample averages are not a good idea (Why?)

Better is an "exponential, recency-weighted average":

$$Q_{n+1} \doteq Q_n + \alpha \left[R_n - Q_n \right]$$

= $(1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i$,

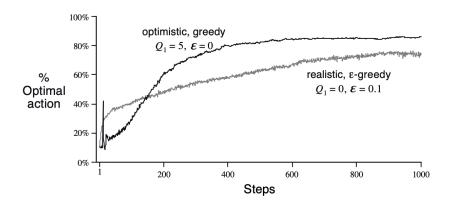
where α is a constant step-size parameter, $\alpha \in (0,1]$

There is bias due to Q_1 that becomes smaller over time

Optimistic Initial Values

The estimates so far depend on $Q_1(a)$, i.e., they are biased. So far we have used $Q_1(a)=0$

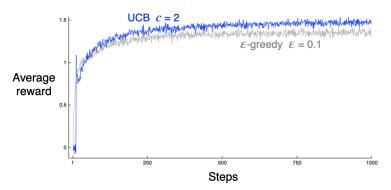
Suppose we initialize the action values **optimistically** $(Q_1(a) = 5)$,



Upper Confidence Bound (UCB) action selection

A clever way of reducing exploration over time Estimate an upper bound on the true action values Select the action with the largest (estimated) upper bound

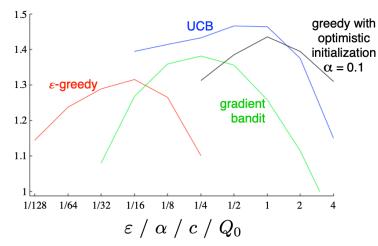
$$A_t \doteq rg \max_{a} \left[Q_t(a) + c \sqrt{rac{\log t}{N_t(a)}}
ight]$$



Demo

https://pavlov.tech/2019/03/02/animated-multi-armed-bandit-policies/

Comparison of Bandit Algorithms



Bandits Summary

These are all simple methods

- but they are complicated enoughwe will build on them
- we should understand them completely
 - there is a lot of theory, e.g., upper/lower bounds
- there are still open questions

Our first algorithms that learn from evaluative feedback

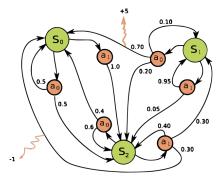
• and thus must balance exploration and exploitation

Our first algorithms that appear to have a goal

• that learn to maximize reward by trial and error

Back to MDPs

Standard model for Reinforcement Learning problems



- \bullet S states
- R rewards
- A actions
- Discrete steps $t = 0, 1, 2, \dots$
- Environment dynamics

Source: Waldoalvarez @ wikimedia

$$p(s', r|s, a) \leftarrow Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$$

The Agent Learns a Policy

Policy at step t, denoted π_t , maps from states to actions.

$$\pi_t(a|s) = \text{ probability that } A_t = a \text{ when } S_t = s$$

Special case are deterministic policies.

$$\pi_t(s) = \text{ the action taken with } prob = 1 \text{ when } S_t = s$$

- Reinforcement learning methods specify how the agent changes its policy as a result of experience
- Roughly, the agents goal is to get as much reward as it can over the long run.

Return

Suppose the sequence of rewards after step t is:

$$R_{t+1}, R_{t+2}, R_{t+3}, \dots$$

What do we maximize?

At least three cases, but in all of them, we seek to maximize the **expected return**, $\mathbb{E} G_t$, on each step t.

- **Total reward**, $G_t = \text{sum of all future reward in the episode}$
- **Discounted reward**, $G_t = \text{sum of all future } discounted \text{ reward}$
- Average reward, G_t = average reward per time step

Episodic Tasks

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze

In episodic tasks, we almost always use simple total reward:

$$G_t = R_{t+1} + R_{t+2} + \cdots + R_T,$$

where T is a final time step at which a **terminal state** is reached, ending an episode.

Continuing Tasks

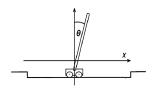
Continuing tasks: interaction does not have natural episodes, but just goes on and on...

In this class, for continuing tasks we will always use *discounted* return:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1},$$

where $0 \le \gamma \le 1$, is the **discount rate**. shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted Typically, $\gamma = 0.9$

An Example: Pole Balancing



Avoid **failure**: the pole falling beyond a critical angle or the cart hitting end of track

(image from Ma&Likharev 2007)

As an episodic task where episode ends upon failure:

reward = +1 for each step before failure

 \Rightarrow return = number of steps before failure

As a **continuing task** with discounted return:

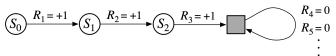
reward = -1 upon failure; 0 otherwise

 \Rightarrow return = $-\gamma^k$, for k steps before failure

In either case, return is maximized by avoiding failure for as long as possible.

A Trick to Unify Notation for Returns

- In episodic tasks, we number the time steps of each episode starting from zero.
- We usually do not have to distinguish between episodes, so instead of writing for states in episode j, we write just S_t
- Think of each episode as ending in an absorbing state that always produces reward of zero:



• We can cover **all** cases by writing $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$,

where γ can be 1 only if a zero rewards absorbing state is always reached.

What about average reward?

Tasks that continue forever, but later rewards are not substantially less important than the earlier.

- Patrolling an area against patient intruders
- Controlling vibrations of an airplane

Not very common in Al problems.

Summary

RL is a set of methods to learn a policy from an interaction with environment

The goal is to maximise return derived from immediate rewards

The simplest RL problem is the multi-armed bandit problem

- exploration vs. exploitation problem
- ullet ϵ -greedy, optimistic initialisation, UCB

Canonical model of RL problems is MDP