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Plan of today’s lecture

1 Rationality as expected utility maximization

2 Reasoning with joint probability distribution

3 Bayesian networks

4 Decision networks
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Rational agent

Rational agent chooses the actions that maximise its expected
utility over all possible outcomes.

rational decisions = decision theory
= utility theory + probability theory

Rationality and its limitation is often studied in the form of
lotteries, e.g., Would you rather have:

10% chance of winning $90 or

50% chance of winning $20?

To build intelligent (rational) agents, we need to assess the utility
and the probability of various events.
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Typical AI Applications with Probabilistic Reasoning

Diagnosis support

Medical, IT support, machinery service, etc.

Robotic localisation: what is the position of the robot given

Noisy actuators

Multiple noisy sensors

Natural language processing

What is the topic of a text given its words?

What is the probability that a LLM generates this text?
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Basic (discrete) probability recapitulation

Random variable: sunshine S ∈ {0, 1}, rain R ∈ {0, 1},
dice D ∈ {1, 2, 3, 4, 5, 6}.

Joint distribution:

P(S ,R) =

s r P(S = s,R = r)
0 0 0.20
0 1 0.08
1 0 0.70
1 1 0.02

Marginal distribution:

P(S) =
s P(S = s)
0 0.28
1 0.72

(sum rows)

Conditional distribution:

P(S |R = 1) =
s P(S = s|R = 1)
0 0.8
1 0.2

(select rows + normalize)
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Basic probability statements

Random variables are exhaustive and mutually exclusive:∑
a∈A

P(A = a) = 1

Inclusion-exclusion principle:

P(a ∨ b) = P(a) + P(b)− P(a ∧ b)

Product rule:
P(A,B) = P(A|B)P(B)

Bayes’ rule:

P(A,B) = P(B,A)

P(A|B)P(B) = P(B|A)P(A)

P(A|B) =
P(B|A)P(A)

P(B)
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Inference Using Full Joint Distribution

Knowledge base:

Updating belief based on evidence:

P(cavity |toothache) =
P(cavity ∧ toothache)

P(toothache)
=

0.108 + 0.012

0.108 + 0.012 + 0.016 + 0.064
= 0.6

P(¬cavity |toothache) =
P(¬cavity ∧ toothache)

P(toothache)
=

0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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The size of full joint distribution grows exponentially

Slightly more realistic example:
Cavity ∈ {true, false}
Toothache ∈ {true, false}
Catch ∈ {true, false}

Sex ∈ {male, female}
Age ∈ {child , teen, adult, senior}
Diet ∈ {omnivore, vegetarian, vegan}

Hygene ∈
History ∈
. . .

The size of the joint probability table for problem with variables X1, . . .Xn is:

n∏
i=1

|Xi | ≥ 2n

We need to:

Store the data in memory

Iterate over large portions of them to answer queries

Obtain a probability for each cell!
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Absolute Independence

Assume variables:
Cavity ,Toothache,Catch,Weather ∈ {cloudy , sunny , rain, snow}
The size of P(Cavity ,Toothache,Catch,Weather) is 2× 2× 2× 4 = 32.

We know that

P(Cavity ,Toothache,Catch,Weather) =

P(Weather |Cavity ,Toothache,Catch)P(Cavity ,Toothache,Catch)

Dental problems do not influence the weather, hence:

P(Weather |Cavity ,Toothache,Catch) = P(Weather)

Therefore without loss of precision, we can represent

P(Cavity ,Toothache,Catch,Weather) =

P(Cavity ,Toothache,Catch) of size 2× 2× 2 = 8

∗ P(Weather) of size 4

The overall size of the representation is 8 + 4 = 12.
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Conditional Independence

Absolute independence is quite rare. We can use conditional
independence to reduce the representation size further.
When one has cavity, does catch depend on toothache?

P(Catch|Toothache,Cavity) = P(Catch|Cavity)

Variables X and Y are independent given Z , if any of the following
holds:

P(X |Y ,Z ) = P(X |Z ),P(Y |X ,Z ) = P(Y |Z ),P(X ,Y |Z ) = P(X |Z )P(Y |Z )

P(Toothache,Catch,Cavity) =
P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity) =
= P(Toothache|Cavity) of size 2× 2 = 4
∗P(Catch|Cavity) of size 2× 2 = 4
∗P(Cavity) of size 2

It does not lead to savings here, but often does in large problems.
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Bayesian Network

Formal framework for compact representation and inference in
large joint distributions.

It specifies the conditional independence relationships among
random variables and the corresponding necessary joint
distributions.

Bayesian network consists of:

A graph node for each random variable

Directed edges from parents to children represented direct
influence of the children’s values by the parent values. The
edges form a Directed Acyclic Graph (DAG).

For each node Xi , a conditional probability table
P(Xi |Parents(Xi ))
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Bayesian Network Example

An alarm usually sounds when a burglary is in progress, but
sometimes it is started by a minor earthquake. There are two
neighbours which may here the alarm and call us and John is more
likely to call than Mary.
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How does a BN represent the joint distribution?

From the chain rule (iterative application of the product rule) we
know:

P(J,M,A,B,E) = P(J|M,A,B,E) ∗ P(M|A,B,E) ∗ P(A|B,E) ∗ P(B|E) ∗ P(E)

From conditional independence of individual variables

= P(J|A) ∗ P(M|A) ∗ P(A|B,E) ∗ P(B) ∗ P(E)

And these are exactly the tables included in the BN

=
∏
i

P(Xi |Parents(Xi ))

Since BN is a DAG, the topological ordering will always provide a
correct ordering of the variables.
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Other structures may also represent the distibution

While the edges are easy to think about as causality, it is not
necessarily the case.
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Conditional independence in BNs

We required that only node’s parents influence its value; hence

(1) a node is conditionally independent of its predecessors, given
its parents.

The BN’s topology captures other independence relationships:

(2) a node is conditionally independent of its non-descendants,
given its parents;

(3) a node is conditionally independent of all other nodes, given
its parents, children, and children’s parents.

Understanding independence speeds up the inference algorithms.
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Inference in BNs

Task: Compute the posterior probability distribution over a set of
query variables (X), given some observed assignments for
evidence variables (E = e).

Let Y be the set of non-query and non-evidence variables, the task
is

P(X|e) =
P(X, e)

P(e)
= αP(X, e) = α

∑
y∈Y

P(X, e, y),

where the last joint distribution is represented by the BN as the
product ∏

i

P(Xi |Parents(Xi )).
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Inference in BNs by enumeration

In the burglary example, assume that both John and Marry called
and we are interested in the probability of the burglary.

X = {Burglary}, E = {MaryCalls, JohnCalls}, Y = {Alarm,Earthquake}

Than from the previous

P(B|j ,m) = αP(B, j ,m) = α
∑
e∈E

∑
a∈A

P(B, j ,m, e, a)

For Burglary = true

P(b|j ,m) = α
∑
e∈E

∑
a∈A

P(b)P(e)P(a|b, e)P(j |a)P(m|a)

It works, but requires iterating all combinations of variables in Y.
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Inference in BNs by enumeration

P(b|j ,m) = α
∑
e∈E

∑
a∈A

P(b)P(e)P(a|b, e)P(j |a)P(m|a)

= αP(b)
∑
e∈E

P(e)
∑
a∈A

P(a|b, e)P(j |a)P(m|a)

The computation can be visualised in a tree.

Multiplication by P(b) only once

Identical subtrees can be re-used
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The complexity of exact inference in BNs

If the BN is a polytree (a tree disregarding the edge orientation),
then the time and space complexity is linear in the overall number
of conditional probability table entries O(n.dk).

For general BNs, the problem is #P-hard (harder than
NP-complete).
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Special types of BNs: Näıve Bayes classifier

Simple classifier, used for example for spam filtering.

An unobservable class Y ∈ {ham, spam} influences the probability
of occurrence of individual words, e.g., W1 = bargin,
W2 = socrates, etc.

Y

W1 W2 W3

. . .
Wn

Given an email, what is the probability that it is spam?

P(spam|w) = αP(spam)
n∏

i=1

P(wi |spam)
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Special types of BNs: Hidden Markov model

Special case of dynamic Bayesian network, used for example for
robotic localisation or speech recognition.

An unobservable true position Ht in time step t. Noisy sensor
reading about the position Et .

H1 H2 H3 H4 H5

E1 E2 E3 E4 E5

Given last sensor readings, what is the probability of some position?
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Decision networks

Influence diagrams (aka. decision networks) combine Bayesian
networks with additional nodes for decisions (rectangles) and
utilities (diamonds).

In the simplest form, each decision is evaluated in the same way as
a chance node with evidence and the decision that maximises the
expected utility is selected.
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Summary

Many AI problems require reasoning with uncertainty

Joint probability distribution is a powerful knowledge
representation

But they are growing exponentially, which causes problems

Bayesian networks compactly represent joint distributions

Represent exactly the joint distribution in smaller space

Inference is still exponential in general

Inference is polynomial with special structure

Bayesian networks are a general framework with many
specializations

Naive Bayes, HMM

Influence diagrams introduce decisions and utilities and allow
expected utility maximization
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