Lecture 12: Sequential Decisions with Partial Information (POMDPs)

Viliam Lisý \& Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague
viliam.lisy@fel.cvut.cz, bosansky@fel.cvut.cz
May, 2024

What we already know?

What we already covered:

- finding optimal plan
- search-based (A*) / learning-based (RL) / sampling-based (MCTS) approaches
- uncertainty

The main formal model for us was Markov Decision Process (MDP).

Unfortunately, the world is not perfect - agents often do not have perfect information about the true state of the environment \rightarrow Partially Observable MDPs (POMDPs).

Motivation for POMDPs

Many practical applications naturally fit to the POMDP class:

- more realistic
- agents often receive partial information about the true state (observations) rather than complete states
- in robotics, the exact location of the robot in the environment is typically not known
- sensors are imperfect (there is always some level of noise/uncertainty)
- actions are imperfect
- security scenarios (assuming fixed strategy of the opponent)
- agents typically do not know the effects of the actions of the opponent (which computer has been infiltrated by an attacker)

Definition POMDPs

Recall the definition of POMDPs - We have a finite sets of states \mathcal{S}, rewards \mathcal{R}, and actions \mathcal{A}. The agent interacts with the environment in discrete steps $t=0,1,2, \ldots$. At each timestep, the agent has a belief - a probability distribution over states that expresses the (subjective) likelihood about the current states.

The agent receives observations from a finite set \mathcal{O} that affect the belief. The agent starts from an initial belief and based on actions and observations, it updates its belief. Given the current belief $b: \mathcal{S} \rightarrow[0,1]$ and some action $a \in \mathcal{A}$ and received observation $o \in \mathcal{O}$, the new belief is defined as:

$$
b\left(s^{\prime}\right)=\mu O\left(o \mid s^{\prime}, a\right) \cdot \sum_{s \in \mathcal{S}} \operatorname{Pr}\left(s^{\prime} \mid s, a\right) \cdot b(s)
$$

where μ is a normalizing constant.

POMDP - Example

$\#$	$\#$	$\#$	$\#$	$\#$	$\#$
$\#$	G				$\#$
$\#$	$\#$	$\#$	$\#$		$\#$
$\#$	\downarrow	$\#$	$\#$		$\#$
$\#$					$\#$
$\#$	$\#$	$\#$	$\#$	$\#$	$\#$

The robot can now perceive only its surroundings but does not know the exact position in the maze. States and actions remain the same.

- $\mathrm{s}=(X, Y, d, G)$
- actions $=$ (move_forward, move_backward, turn_left, turn_right)
Observations are all possible combinations of walls / free squares in the 4-neighborhood (in front, right, behind, left):
- (\#, \#, \#, \#), (\#, \#, \#, -), \ldots

Beliefs in POMDPs

So how exactly we compute the beliefs ${ }^{1}$:

$$
a=\text { forward, } o=(\#,-,-, \#)
$$

for $s^{\prime}=\left(1,1,<,{ }_{-}\right)$, it holds

$$
\begin{gathered}
b_{t+1}^{\prime}\left(s^{\prime}\right)=O\left(o \mid s^{\prime}, a\right) \cdot \operatorname{Pr}\left(s^{\prime} \mid a,(2,1,<,-)\right) \cdot b_{t}\left(\left(2,1,<,{ }_{-}\right)\right) \\
b_{t+1}^{\prime}\left(s^{\prime}\right)=1 \cdot 1 \cdot 0.25
\end{gathered}
$$

and then $b_{t+1}\left(s^{\prime}\right)=\mu b_{t+1}^{\prime}\left(s^{\prime}\right)$ where $\mu=\frac{1}{b_{t+1}^{\prime}((1,1,<,-))+b_{t+1}^{\prime}((4,4,>,-))}$
${ }^{1}$ Coordinates $(0,0)$ are in the bottom left corner.

How to act optimally in MDPs

Recall a value function for an MDP and a policy π

$$
v_{\pi}: \mathcal{S} \rightarrow \mathbb{R}
$$

is a function assigning each state s the expected return $v_{\pi}(s)=\mathbb{E}_{\pi} G_{0}$ obtained by following policy π from state s.

Optimal policies share the same optimal state-value function:

$$
v_{*}(s)=\max _{\pi} v_{\pi}(s) \text { for all } s \in \mathcal{S}
$$

Any policy that is greedy with respect to v_{*} is an optimal policy.

$$
\pi_{*}(s)=\arg \max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
$$

How things change for POMDPs?

Which action is optimal depends on the belief over states:

$\#$	$\#$	$\#$	$\#$	$\#$	$\#$
$\#$	G			$>(0.5)$	$\#$
$\#$		$\#$	$\#$		$\#$
$\#$		$\#$	$\#$		$\#$
$\#$	$<(0.5)$				$\#$
$\#$	$\#$	$\#$	$\#$	$\#$	$\#$

Consider 2 actions - move backward and turn right

- move backward is better for the state $\left(4,4,>,{ }_{-}\right)$
- turn right is better for the state $\left(1,1,<,{ }_{-}\right)$

The value of each action depends on the exact belief \rightarrow value function also depends on beliefs.

Value function for POMDPs

A value function for a POMDP and a policy π

$$
v_{\pi}: \Delta(\mathcal{S}) \rightarrow \mathbb{R}
$$

Can we update Bellman equation to use beliefs? Yes!

$$
v_{*}(b)=\max _{a} \int p\left(b^{\prime}, r \mid b, a\right)\left[r+\gamma v_{*}\left(b^{\prime}\right)\right] d b^{\prime}
$$

... the "only problem" is that b is a continuous variable
\rightarrow computing optimal value function in this form is not practical.

Representation of Value Function

Using beliefs, we have formulated an MDP with a continuous set of states.

Discretization of beliefs is not very practical due to high dimension $(|\mathcal{S}|)$.

Consider the Bellman equation again - what is our goal?

$$
v_{*}(b)=\max _{a} \int p\left(b^{\prime}, r \mid b, a\right)\left[r+\gamma v_{*}\left(b^{\prime}\right)\right] d b^{\prime}
$$

Find the best action (and value) for each belief point.
There is infinitely many belief points, but the set of actions \mathcal{A} is finite!

Representation of Value Function $-\alpha$ vectors

If we fix an action $a \in \mathcal{A}$, the value function (for that action) is a linear function in the current belief. These linear functions are called α-vectors.

For each belief point, we take the best action hence we maximize over all α-vectors:

$$
v(b)=\max _{\alpha} \sum_{s \in \mathcal{S}} \alpha(s) \cdot b(s)
$$

α-vectors are in fact more general \rightarrow they represent expected value for a policy (contingency plan consisting of multiple steps).

Using α-vectors in value iteration

Using α-vectors corresponding to the value functions of currently considered policies, we can compute new value (next iteration):

$$
v_{t+1}(b)=\max _{a}\left\{\sum_{o \in O^{\prime} \in v_{t}} \max _{\alpha^{\prime} \in v_{t}}\left[\sum_{r, s, s^{\prime}} \mu p\left(s^{\prime}, r \mid s, a\right) b(s) O\left(o \mid s^{\prime}, a\right)\left(r+\gamma \alpha^{\prime}\left(s^{\prime}\right)\right)\right]\right\}
$$

... but how do we construct α-vectors from v_{t+1} ?
(1) assume there are α-vectors α^{\prime} representing values of policies in step t
(2) in step $t+1$, we choose some action and then, based on the observation, we follow with some of the policy corresponding to α^{\prime} from v_{t} (different observation leads to a different belief)
(3) for example, choose action a_{3} and then

- if o_{2} is received, use value of α_{4}^{\prime} (i.e., this value is achievable via some policy corresponding to this α-vector)
- if o_{1} is received, use value of α_{2}^{\prime}

Let's consider the best-known POMDP example - a tiger problem: There are 2 doors hiding a treasure or a tiger. The agent does not know where is the tiger and where is the treasure. The agent can gather observations (listen) or open one of the doors.

- states - $\{$ tiger_left $(T L)$, tiger_right $(T R)\}$
- actions - \{open_left, open_right, listen\}
- observations - $\{$ hearTL, hearTR $\}$
- rewards -
- - 1 for any listening action (in all states)
- +10 for opening the door with treasure
- - 100 for opening the door with tiger
- states - \{tiger_left($T L$), tiger_right $(T R)\}$
- actions - \{open_left, open_right, listen\}
- observations - $\{$ hearTL, hearTR\}
- rewards -
- -1 for any listening action (in all states)
- +10 for opening the door with treasure
- - 100 for opening the door with tiger
- initial belief is uniform $-b_{0}(T L)=b_{0}(T R)=0.5$
- transition dynamics -
- performing action listen does not change the state
- opening a door "restarts" the problem (i.e., $p\left(s^{\prime} \mid s, a\right)=0.5$ for both states $\left.s^{\prime} \in\{T L, T R\}\right)$.
- observation probabilities -
- listening action generates observation hearTL/TR with a 15% error - i.e., agent chooses action $a=$ listen, then $O($ hearTR $\mid a, T R)=0.85$ and $O($ hearTR $\mid a, T L)=0.15$.

Tiger example

What are the optimal actions (1-step policy)?

Choosing action listen is not sufficient \rightarrow what should we do next?

Depending on the observation, the belief will change:

- assume $b_{0}(T R)=b_{0}(T L)=0.5, a=$ listen, and $o=$ hearTR
- now $b_{1}(T R)=\frac{0.5 \cdot 0.85}{0.5 \cdot 0.85+0.5 \cdot 0.15}=0.85$

Since $0.85 \in[0.1,0.9]$, after one observation the next optimal action is still listen.

In general, the chosen actions in policies depend on received observation, for example (a 2-step policy):

- listen
- if (observation is hearTR \rightarrow open_left)
- else if (observation is hearTL \rightarrow listen)

Tiger example

What do the α-vectors corresponding to 2 -step policies look like?

Exact value iteration in POMDPs

In exact (full) value iteration in POMDPs, $\left|V_{t}\right|=|\mathcal{A}| \cdot\left|V_{t-1}\right|^{|\mathcal{O}|}$ new α-vectors are generated in each step of the algorithm.

It is clear that such approach will not scale well. Pruning dominated α-vectors is possible but does not solve the issue.

Observation

We do not need to compute all α-vectors - large portion of belief space is (often) not reached hence not relevant for solving the problem.

We can keep only a bounded number of belief points and for each belief point we keep 1 (the best) α-vector.

Point-based updates and point-based value iteration (PBVI)

Let $\mathcal{B}=\left\{b^{1}, b^{2}, \ldots\right\}$ be a set of $|\mathcal{B}|$ belief points. Point-based value iteration performs Bellman update only for this limited set of belief points:

- instead of adding all α-vectors, only the α-vectors that are optimal in some of the belief points from \mathcal{B} are kept,

Comparison of generated α-vectors for full VI and PBVI for tiger example after 30 iterations (from slides of M. Herrmann, RL 13).

Point-based updates and point-based value iteration (PBVI)

Let $\mathcal{B}=\left\{b^{1}, b^{2}, \ldots\right\}$ be a set of $|\mathcal{B}|$ belief points. Point-based value iteration performs Bellman update only for this limited set of belief points:

- the set of belief points \mathcal{B} can correspond to a uniform coverage of the belief space or the points can focus on more relevant parts of the belief space

Next week

Scaling-up solving POMDPs

- more scalable VI-based algorithms
- using MCTS-like algorithm for solving POMDPs
- from POMDPs to II games and DeepStack (poker)

