
Lecture 2: Formal Models of AI Problems and
Search

Viliam Lisý & Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

bosansky@fel.cvut.cz

February, 2021

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 1 / 26

Key Points of the Lecture

Why we are talking about search at all?

Why it is good to have a formal representation of a problem?

Provide a more unifying perspective on different algorithms.

Many (even recent) great AI breakthroughs use search as one of
the components.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 2 / 26

Search and AI

Search is one of the most fundamental and universal method for
solving problems.

Having a formal representation of the problem, search algorithms
allow us in a systematic way look for a solution:

formal representation of every possible situation in the
scenario – the states of the problem (denoted S)

how the states can be changed by the algorithm (agent) – the
actions in the scenario (denoted A)

By applying an action a ∈ A to a state s ∈ S , the state will change
to a different state s ′ ∈ S .

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 3 / 26

Example 1 – 8 puzzle

1 2

4 5 3

7 8 6

→
1 2 3

4 5 6

7 8

current state → goal state

Goal: rearrange the numbers by moving the empty square to
adjacent squares so that they are ordered

Possible representations:

values of tiles in a sequence
s = [1, , 2, 4, 5, 3, 7, 8, 6]

position of numbers
s = [1, 3, 6, 4, 5, 9, 7, 8]

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 4 / 26

Example 2 – Robotic arm

Find correct configurations of joints / parts of the arm so that the
arm catches a desired object.

Possible representations:

s = [θ1, α1, θ2, α2, . . .]

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 5 / 26

Example 3 – Chess

Possible representations:

positions of pieces on the board
s = [[A1,B1,C1, . . . ,H2], [A8, . . . ,H7], . . .] → additional
information needed besides the board itself (king has moved,
rook has moved, repeated positions (!))

Alternatively, a history of played moves represents a state.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 6 / 26

Solution of a Problem

Many of the AI problems can be formulated as finding a sequence
of actions that leads to a goal state.

We want to find the best such sequence

minimize the number of actions

every action can have some cost (or reward) associated with it
→ minimization of total cost

We can reason about possible states / effects of actions
(the rules of the environment are known (!)):

we have a formal model

(for the large scale) access to a simulator

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 7 / 26

Main AI Models for (Sequential) Decision Making

There are several fundamental models when searching for optimal
sequence of actions based on searching through state space
(possibly uncertain effect of actions / stochastic environment):

Markov Decision Processes (MDPs)

Partially Observable Markov Decision Processes (POMDPs)

(Imperfect Information) Extensive-Form Games (EFGs)

(Partially Observable) Stochastic Games (POSGs)

We introduce selected general models now to emphasize the
importance of the correct formalization of the problem. Selected
algorithms for solving them optimally will be introduced later.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 8 / 26

Main AI Models for (Sequential) Decision Making

There are several fundamental models when searching for optimal
sequence of actions based on searching through state space
(possibly uncertain effect of actions / stochastic environment):

Markov Decision Processes (MDPs) → perfectly observable
environment, only 1 agent is acting

Partially Observable Markov Decision Processes (POMDPs)
→ partially observable environment, only 1 agent is acting

(Imperfect Information) Extensive-Form Games (EFGs) →
perfectly (partially) observable environment, finite horizon,
n agents can act (every agent optimizes own goal /
utility)

(Partially Observable) Stochastic Games (POSGs) →
perfectly (partially) observable environment, infinite horizon,
n agents can act (every agent optimizes own goal / utility)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 9 / 26

Markov Decision Processes (MDPs)

Consider (finite) sets of states S , rewards R, and actions A. The
agent interact with the environment in discrete steps
t = 0, 1, 2, . . ., at each timestep the agent receives the current
state St ∈ S , selects an action based on the state At ∈ A. As a
consequence of taking the action, the agent receives a reward
Rt+1 ∈ R and find itself in a new state St+1.

Rewards and states are generated based on a dynamics of the MDP

p(s ′, r |s, a)← Pr{St = s ′,Rt = r |St−1 = s,At−1 = a}

The next state depends only on the current state and the action
(Markov property). In the first lectures/labs, we assume that
the environment is deterministic.

Transition and reward dynamics can be defined separately.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 10 / 26

Markov Decision Processes (MDPs) – Example

#
G
#
↓ # #
#
#

Consider a robot (↓) in a maze (# are walls), the arrow represents
the direction the robot is facing, G is gold.
What are the states and actions?

s = (X ,Y , d ,G)

actions = (move forward, move backward, turn left,
turn right)

MDP dynamics:

p((1, 1, ↓, false), 0 | (1, 2, ↓, false),move forward) = 1

p((1, 1, ↓, false), 0 | (1, 2, ↓, false),move backward) = 0

...
Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 11 / 26

Markov Decision Processes (MDPs)

Why do we need some generic formal description?

we will have a well-defined problem (inputs / outputs for the
algorithm)

formalization helps to think about the problem (e.g.,
formalizing the dynamics)

we can reuse existing algorithms

if we design and implement a brand-new algorithm for MDPs
(POMDPs / EFGs / ...), we can solve (almost) all instances

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 12 / 26

Partially Observable Markov Decision Processes
(POMDPs)

States, actions, and rewards are as before, however, the agent
cannot perfectly observe the current state.

The agent has a belief – a probability distribution over states that
express the (subjective) likelihood about the current state.The
agent receives observations from a finite set O that affect the
belief.The agent starts from an initial belief and based on actions
and observations, it updates its belief.Given the current belief
b : S → [0, 1] and some action a ∈ A and received observation
o ∈ O, the new belief is defined as:

b(s ′) = µO(o|s ′, a) ·
∑
s∈S

Pr(s ′|s, a) · b(s)

where µ is a normalizing constant.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 13 / 26

POMDP – Example

#
G
#
↓ # #
#
#

The robot can now perceive only its surroundings but does not
know the exact position in the maze. States and actions remain
the same.

s = (X ,Y , d ,G)

actions = (move forward, move backward, turn left,
turn right)

Observations are all possible combinations of walls / free squares
in the 4-neighborhood:

(#,#,#,#), (#,#,#,), . . .

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 14 / 26

Extensive-Form Games (EFGs)

Agent is not the only one that changes the environment. Every
state has a player that acts in that state.EFGs are typically
visualized as game-trees that:

are finite (the game has some pre-defined horizon; note that
(PO)MDPs do not have this!)

node of the game tree corresponds to the history of actions
from the beginning, edges are actions (as search trees)

rewards (termed utilities) are defined only in terminal states
(leafs of the game tree)

agent can have imperfect information (certain states can be
indistinguishable) → we will not be able to cover this in ZUI
(→ B4M36MAS)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 15 / 26

Partially Observable Stochastic Games (POSGs)

POSGs are a multi-agent extension of POMDPs → every agent can
have their own actions, observations, and rewards. Every agent has
its own belief (about the state, about beliefs of other agents, . . .).

One of the most general formal model → algorithmically
intractable in general.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 16 / 26

Solution of a Deterministic MDP

How can we find a solution of an MDP?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 17 / 26

Solution of a Deterministic MDP

How can we find a solution of an MDP?

Find the best sequence of actions leading to the goal → explore
relevant states of an MDP and find the best action to be played in
these states such that the trajectory (or a run)

S0,A0,R1,S1,A1,R2,S2, . . . ,Sk

maximizes the accumulated reward (and Sk is a goal state)1.

For now, the rewards are summed together (in case of stochastic
transitions / POMDPs, a discounted sum is typically used with
discount factor 0 < γ < 1).

1Maximization of rewards = minimization of costs (we will use both).
Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 18 / 26

Solving Deterministic MDPs

1 Start from the initial state S0

2 Apply actions and generate new possible states

3 If one of the generated states is the goal state → finish

4 If not, choose one state and go to step 2

Questions:

Which state to choose to out of all generated new states in
step 4?

What if we generate a state that we have already explored?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 19 / 26

Solving Deterministic MDPs – Choosing Next State

Q1

Which state to choose to out of all generated new states in step 4?

Goal is to find the best sequence of actions → we want to explore
the ones with the highest rewards (lowest costs) first.

What if we make a mistake? → We keep a (sorted) list of
reachable states that can be further explored – open list or fringe.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 20 / 26

Solving Deterministic MDPs – Variants of Uninformed
Search

Variants of using the fringe:

the fringe is sorted, new states to explore are taken from the
beginning → uniform-cost search

the fringe is unsorted, newly expanded states are inserted to
the front, new states to explore are taken from the beginning
→ depth first search (DFS)

the fringe is unsorted, newly expanded states are appended at
the back, new states to explore are taken from the beginning
→ breadth first search (BFS)

BFS is complete, finds the shallowest solution (the sequence that
requires the least number of actions while ignoring rewards).
Requires exponential memory (and time).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 21 / 26

Solving Deterministic MDPs – Variants of Uninformed
Search

DFS is not complete (the algorithm might not terminate) → we
limit the maximal length of the sequence actions DFS can explore
and iteratively increase this limit → iterative deepening.

Uniform-cost search is complete and optimal (in case all rewards
are strictly negative). A variant of Dijkstra’s algorithm (only the
best path to a goal state not all states).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 22 / 26

Solving Deterministic MDPs

Q2

What if we generate a state that we have already explored?

Using this algorithm, we are generating a search tree. Every node
of the search tree corresponds to a state in the environment but
multiple nodes can correspond to the same state.

We can maintain a closed list of already evaluated states.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 23 / 26

Iterative Deepening

Combining good characteristics of BFS and DFS. Let’s have a
limited-depth-dfs method:

call limited-depth-dfs with depth limit 0,

if unsuccessful, call limited-depth-dfs with depth limit 1,

if unsuccessful, call limited-depth-dfs with depth limit 2,
etc.

Complete, finds the shallowest solution, space requirements of a
DFS.Counterintuitively, it is not that wasteful (timewise):

the search tree grows exponentially → it is more time
consuming to generate / evaluate all states in depth exactly d
than repeatedly visiting states in the shallower depth

What if we want to optimize cost instead of number of actions? →
limit the overall cost and increase the cost iteratively by 1.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 24 / 26

Backward / Bidirectional Search

Do we need to search only from the initial state? → No.

Sometimes, searching from the goal state to a starting state can
be better:

number of the actions that lead to the goal state is small (the
problem is difficult at the beginning)

we need to be able to effectively generate previous states

We can go even further → searching from the both sides.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 25 / 26

Bidirectional Search

It is tempting → searching from start / goal (e.g., in parallel (!)).

If the shallowest solution has depth d , we can expand only bd/2

nodes (where b is the branching factor (number of available
actions)).

But what if the searches do not meet “in the middle”? → We’ll see the

next week.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 26 / 26

