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Plan of today’s lecture

1 Logic in AI in the past and now

2 Logical problem representations

3 Situation calculus

4 Intelligent planning
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Introduction to Artificial Intelligence

Plan of today’s lecture

Example of use of logic in a realistic system - slow, but does the job.

Potentially useful for getting guarantees in AI. Will there be a logic re-

nessaince? Sturctured knowledge useful - e.g. eutomatic construction of

heuristics and their study = AI planning. Very core of classical AI and

potential in the future =¿ part of ZUI



Acknowledgements

Slides are heavily based on J. Klema’s slides. For more details on
logical agents see his video from the last year.
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Logics in AI

There has been a big hype of logical agents in 60s and 70s.

+ It can represent knowledge about the world

+ It can represent intelligent reasoning

- It is not very convenient for working with uncertainty

- It is usually extremely computationally expensive

( expresivity vs. completeness vs. effectivity )

Logic in AI 2020s

Interpretable safe AI

Relational ML/RL

Theorem proving

Model checking

Knowledge graphs

Automated planning
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Introduction to Artificial Intelligence

Logics in AI

It is not mainstream at the moment, but clearly belongs to ZUI



Motivation example – monkey and bananapMotivation example – monkey and banana

Vladimir Lifschitz: Planning course, The University of Texas at Austin.
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Introduction to Artificial Intelligence

Motivation example – monkey and banana

Explain how would it be represented so far. And in CSP?



Motivation example – monkey and banana

Problem description

a monkey is in a room, a banana hangs from the ceiling,
the banana is beyond the monkey’s reach,
the monkey is able to walk, move and climb objects, grasp banana,
the room is just the right height so that the monkey can move a
box, climb it and grasp the banana,
the goal is to generate this plan (sequence of actions) automatically.

Key characteristics

a deterministic task

a general description available

all the necessary knowledge is provided
we need to represent it in some language
and perform certain reasoning / inference

a planning task
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Language → First Order (Predicate) Logic (FOL)

Remember B0B01LGR: Logic and Graphs

Syntaxe predikátové logiky
Sémantika predikátové logiky

Termy a formule predikátové logiky
Sentence

Syntaxe predikátové logiky

Jazyk

Jazyk predikátové logiky obsahuje tyto symboly:
1 logické symboly

proměnné; Var je množina všech proměnných
logické spojky: ¬,∧,∨,⇒,⇔, pop̌r. též tt, ff, |, ↓,⊕
kvantifikátory ∀ (obecný) a ∃ (existenčńı)
symbol rovnosti: =

2 speciálńı symboly

predikátové, kde každý má svou aritu n ≥ 0;
Pred je množina predikátových symbol̊u
funkčńı, kde každý má svou aritu n > 0;
Func je množina funkčńıch symbol̊u
konstantńı; Kons je množina konstantńıch symbol̊u

3 pomocné symboly, jako jsou závorky (, ) a čárka ,

Alena Gollová Predikátová logika 6/34The following slides would, in principle, work with stronger logic!
Modal Logic, epistemic logic, temporal logic, ATL
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Language → First Order (Predicate) Logic (FOL)

Remember B0B01LGR: Logic and Graphs

First order logic

The language of first order predicate logic includes:

logical symbols

variables: {a, b, c} ⊂ Var
logical operators: ¬,∧,∨,→,↔
quantifiers: ∀,∃
equality operator: =

special symbols

predicates (with a fixed arity n ≥ 0)
functions (with a fixed arity n > 0)
constants

auxiliary symbols, such as brackets ( ) and comma ,

The following slides would, in principle, work with stronger logic!
Modal Logic, epistemic logic, temporal logic, ATL
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Planning problem representation in FOL

Situation calculus is one way to represent changing world in FOL

facts hold in particular situations (≈ world state histories)
predicates either rigid (eternal) or fluent (changing)
fluent predicates include a situation argument
e.g., agent(monkey , at ban, now), term now denotes a situation

rigid predicates hold regardless of a situation
e.g., walks(monkey), moveable(box)

situations are connected by the result function
if s is a situation than result(s, a) is also a situation

The monkey problem state can be represented using two predicates

agent(agent name, agent position, stands on, situation)
object(object name, object position,who stands, situation)
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Keeping track of evolving situations

agent(agent name, agent position, stands on, situation)
object(object name, object position,who stands, situation)

pKeeping track of change

� � � � � � � � � � � � � � � � � � � � � � � � �
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Description and application of actions

agent(agent name, agent position, stands on, situation)
object(object name, object position,who stands, situation)

Action “effect” axiom for walk(X ,P1,P2):

∀X ,P1,P2,Z (agent(X ,P1, ground ,Z ) ∧ walks(X )

→ agent(X ,P2, ground , result(Z ,walk(X ,P1,P2)))

Action “effect” axiom for climb(X ):

∀X ,P,Z (agent(X ,P, ground ,Z ) ∧ object(box ,P, none,Z )

→ agent(X ,P, box , result(Z , climb(X )))

∧ object(box ,P,X , result(Z , climb(X )))
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Frame problem

Action axioms describe how fulents change between situations
What happens to fluents, which are not used in the actions?
e.g., the objects while the agent walks

Frame problem: how to cope with the unchanged facts smartly

many “frame” axioms may be necessary to express them in FOL

∀X ,V ,W ,Z ,Y ,P1,P2

(object(X ,V ,W ,Z ) → object(X ,V ,W , result(Z ,walk(Y ,P1,P2))))

f fluent predicates and a actions require O(f · a) frame axioms

many applications of axioms each step is computationally expensive

some tricks diminish the problem, but it never goes away
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Logical planning

FOL can be used to represent states and actions
Goal of planning: logical representation of the desired state

G ≡ ∃Z agent(monkey ,middle, box ,Z )

Reasoning checks whether the goal formula follows from KB

KB ⊨ G

knowledge base (KB) are the inference rules and the initial state
reasoning finds a suitable Z or proves it does not exist
desirable properties: soundness, completeness, efficiency
reasoning procedures: resolution, deductive inference, etc.

see B0B01LGR
generally extremely computationally hard, possibly undecidable
the solution is correct, if reasoning successfully finishes
can be efficient and useful with additional restrictions
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Domain Independent Automated Planning

Subfield of AI dealing (mainly) with

representation languages with reasonable tradeoffs of expressivity
and efficiency
algorithms for finding plans for problems expressed in these
languages

(The following slides are heavily based on Carmel Domshlak’s slides)
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Planning problems

Automated
(AI) Planning

Introduction

What is
planning?

Problem classes

Dynamics

Observability

Objectives

Transition
systems

Representation

Towards
Algorithms

Summary

Planning Problems

What is in common?

All these problems deal with action selection or control

Some notion of problem state

(Often) specification of initial state and/or goal state

Legal moves or actions that transform states into other
state
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Planning task

Automated
(AI) Planning

Introduction

What is
planning?

Problem classes

Dynamics

Observability

Objectives

Transition
systems

Representation

Towards
Algorithms

Summary

Planning Problems

For now focus on:

Plans (aka solutions) are sequences of moves that
transform the initial state into the goal state

Intuitively, not all solutions are equally desirable

What is our task?

1 Find out whether there is a solution

2 Find any solution

3 Find an optimal (or near-optimal) solution

4 Fixed amount of time, find best solution possible

5 Find solution that satisfy property ℵ (what is ℵ? you
choose!)
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Three Key Ingredients of Planning

Automated
(AI) Planning

Introduction

What is
planning?

Problem classes

Dynamics

Observability

Objectives

Transition
systems

Representation

Towards
Algorithms

Summary

Three Key Ingredients of Planning
... and of AI approach to problems in general?

Planning is a form of general problem solving

Problem =⇒ Language =⇒ Planner =⇒ Solution

1 models for defining, classifying, and understanding
problems

- what is a planning problem
- what is a solution (plan), and
- what is an optimal solution

2 languages for representing problems

3 algorithms for solving them
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Why planning is difficult?

Automated
(AI) Planning

Introduction

What is
planning?

Problem classes

Dynamics

Observability

Objectives

Transition
systems

Representation

Towards
Algorithms

Summary

Why planning is difficult?

Solutions to planning
problems are paths from an
initial state to a goal state
in the transition graph

Dijkstra’s algorithm solves
this problem in
O(|V | log (|V |) + |E|)
Can we go home??

Automated
(AI) Planning

Introduction
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planning?

Problem classes

Dynamics

Observability

Objectives

Transition
systems

Representation

Towards
Algorithms

Summary

Why planning is difficult?

Solutions to planning
problems are paths from an
initial state to a goal state
in the transition graph

Dijkstra’s algorithm solves
this problem in
O(|V | log (|V |) + |E|)
Can we go home??

♠ Not exactly ⇒ |V | of our
interest is 1010, 1020, 10100,
. . .

But do we need such
values of |V | ?!

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 18 / 38



Why planning is difficult?

Automated
(AI) Planning

Introduction

What is
planning?

Problem classes

Dynamics

Observability

Objectives

Transition
systems

Representation

Towards
Algorithms

Summary

Why planning is difficult?

Solutions to planning
problems are paths from an
initial state to a goal state
in the transition graph

Dijkstra’s algorithm solves
this problem in
O(|V | log (|V |) + |E|)
Can we go home??

Automated
(AI) Planning

Introduction

What is
planning?

Problem classes

Dynamics

Observability

Objectives

Transition
systems

Representation

Towards
Algorithms

Summary

Why planning is difficult?

Solutions to planning
problems are paths from an
initial state to a goal state
in the transition graph

Dijkstra’s algorithm solves
this problem in
O(|V | log (|V |) + |E|)
Can we go home??

♠ Not exactly ⇒ |V | of our
interest is 1010, 1020, 10100,
. . .

But do we need such
values of |V | ?!

2
0
2
4
-0
4
-3
0

Introduction to Artificial Intelligence

Why planning is difficult?

Example with logistics with 50 trucks servicing 100 cities



What is “classical” planning?

Automated
(AI) Planning

Introduction

What is
planning?

Problem classes

Dynamics

Observability

Objectives

Transition
systems

Representation

Towards
Algorithms

Summary

Where classical planning stands?

dynamics: deterministic, nondeterministic or probabilistic

observability: full, partial or none

horizon: finite or infinite

. . .

1 classical planning

2 conditional planning with full observability

3 conditional planning with partial observability

4 conformant planning

5 Markov decision processes (MDP)

6 partially observable MDPs (POMDP)
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Succinct representation of transition systems

Automated
(AI) Planning

Introduction

What is
planning?

Transition
systems

Representation

State variables

Tasks

Action
Languages

Towards
Algorithms

Summary

Succinct representation of transition systems

More compact representation of actions than as relations
is often

possible because of symmetries and other regularities,
unavoidable because the relations are too big.

Represent different aspects of the world in terms of
different state variables.  A state is a valuation of state
variables.

Represent actions in terms of changes to the state
variables.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 20 / 38



Planning Languages

Automated
(AI) Planning

Introduction

What is
planning?

Transition
systems

Representation

State variables

Tasks

Action
Languages

Towards
Algorithms

Summary

Planning Languages

Key issue

Models represented implicitly in a declarative language

Play two roles

specification: concise model description

computation: reveal useful info about problem’s structure
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The STRIPS language

Automated
(AI) Planning

Introduction

What is
planning?

Transition
systems

Representation

State variables

Tasks

Action
Languages

Towards
Algorithms

Summary

The STRIPS language
Useful fragment of SAS

A problem in STRIPS is a tuple 〈P,A, I,G〉
P stands for a finite set of atoms (boolean vars)

I ⊆ P stands for initial situation

G ⊆ P stands for goal situation

A is a finite set of actions a specified via pre(a), add(a),
and del(a), all subsets of P

States are collections of atoms

An action a is applicable in a state s iff pre(a) ⊆ s
Applying an applicable action a at s results in
s′ = (s \ del(a)) ∪ add(a)
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Why STRIPS is interesting?

STRIPS operators are particularly simple, yet expressive
enough to capture general planning problems.

In particular, STRIPS planning is no easier than general
planning problems.

Many algorithms in the planning literature are easier to
present in terms of STRIPS.

(The following example is based on Antonin Komanda’s slides)
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Sokoban - Example planning domain
State representation:

positions: a1, ... a6,...

f1, ..., f2

box_at(P), free(P)

player_at(P)

adjacent(P1,P2)

adjacent2(P1,P2)

Operators (Actions):
move(X,Y):

pre: player_at(X)

adjacent(X,Y)

free(Y)

add: player_at(Y)

del: player_at(X)

push(X, Y, Z):

pre: player_at(X)

box_at(Y)

free(Z)

adjacent(X,Y)

adjacent(Y,Z)

adjacent2(X,Z)

...
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Grounding of Actions

Operators (Actions):

move(X,Y):

pre: player_at(X)

adjacent(X,Y)

free(Y)

add: player_at(Y)

del: player_at(X)

push(X, Y, Z):

pre: player_at(X)

box_at(Y)

free(Z)

adjacent(X,Y)

adjacent(Y,Z)

adjacent2(X,Z)

add: player_at(Y)

box_at(Z)

free(Y)

del: player_at(X)

box_at(Y)

free(Z)

Grounding:

move_a1_a2

pre: player_at_a1, adjacent_a1_a2, free_a2

add: player_at_a2

del: player_at_a1

move_a2_a3

pre: player_at_a2, adjacent_a2_a3, free_a3

add: player_at_a3

del: player_at_a2

...

push_a1_a2_a3

pre: player_at_a1, box_at_a2, free_a3

adjacent_a1_a2, adjacent_a2_a3,

adjacent_a1_a3

add: player_at_a2, box_at_a3, free_a2

del: player_at_a1, box_at_a2, free_a3

...
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STRIPS Representation of Sokoban
Automated

(AI) Planning

Introduction

What is
planning?

Transition
systems

Representation

State variables

Tasks

Action
Languages

Towards
Algorithms

Summary

The STRIPS language
Useful fragment of SAS

A problem in STRIPS is a tuple 〈P,A, I,G〉
P stands for a finite set of atoms (boolean vars)

I ⊆ P stands for initial situation

G ⊆ P stands for goal situation

A is a finite set of actions a specified via pre(a), add(a),
and del(a), all subsets of P

States are collections of atoms

An action a is applicable in a state s iff pre(a) ⊆ s
Applying an applicable action a at s results in
s′ = (s \ del(a)) ∪ add(a)

P = {player_at_a2, ..., player_at_d3,

box_at_a2, ..., box_at_d3,

free_a2, ..., free_d3,

adjacent_a2_b2, ..., adjacent_d2_d3,

adjacent2_a2_c2, ..., adjacent2_d1_d3 }

I = {player_at_b2, box_at_c1, box_at_c2,

free_a2, free_b1, ..., free_d3,

adjacent_a2_b2,..., adjacent_d2_d3, adjacent2_a2_c2,..., adjacent2_d1_d3}

G = {box_at_a2, box_at_d1}
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Planning in Strips

We can just use A*:

State: a set of true atoms

Applicable actions: based on preconditions

Action application: add the “add” atoms and delete the “del” atoms

(No need for separate simulator implementation)

Problem structure allows automated construction of heuristics!

Allows exploring general heuristics domain independently

Simple heuristic: h(s) = |G \ s|
Solve a suitable simpler version of the problem

Abstraction: solve a smaller problem

e.g., completely remove a predicate from the problem

Relaxation: solve a less constraint problem

Landmarks
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Relaxation heuristics

Whole sub-field of planning in STRIPs and beyond
Automated

(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Relaxation
Heuristics

Relaxations for planning

Relaxation is a general technique for heuristic design:

Straight-line heuristic (route planning): Ignore the fact
that one must stay on roads.
Manhattan heuristic (15-puzzle): Ignore the fact that one
cannot move through occupied tiles.

We want to apply the idea of relaxations to planning.

Informally, we want to ignore bad side effects of applying
actions.

Example (8-puzzle)

If we move a tile from x to y, then the good effect is
(in particular) that x is now free.
The bad effect is that y is not free anymore, preventing us for
moving tiles through it.
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Relaxed planning tasks in STRIPS

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Relaxation
Heuristics

Relaxed planning tasks: idea

In STRIPS, good and bad effects are easy to distinguish:

Effects that make atoms true are good
(add effects).

Effects that make atoms false are bad
(delete effects).

Idea for the heuristic: Ignore all delete effects.
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Relaxed planning tasks in STRIPS

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Relaxation
Heuristics

Relaxed planning tasks

Definition (relaxation of actions)

The relaxation a+ of a STRIPS action
a = 〈pre(a), add(a), del(a)〉 is the action
a+ = 〈pre(a), add(a), ∅〉.

Definition (relaxation of planning tasks)

The relaxation Π+ of a STRIPS planning task Π = 〈P,A, I,G〉
is the planning task Π+ := 〈P, {a+ | a ∈ A}, I, G〉.

Definition (relaxation of action sequences)

The relaxation of an action sequence π = a1 . . . an is the action
sequence π+ := a1

+ . . . an
+.
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Relaxation of actions in Sokoban

Representation → Search + Heuristics
Relaxation

move(X,Y):

pre: player_at(X)

adjacent(X,Y)

free(Y)

add: player_at(Y)

del: player_at(X)

push(X, Y, Z):

pre: player_at(X)

box_at(Y)

free(Z)

adjacent(X,Y)

adjacent(Y,Z)

adjacent2(X,Z)

add: player_at(Y)

box_at(Z)

free(Y)

del: player_at(X)

box_at(Y)

free(Z)
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Introduction How to Relax Delete Relaxation The h+ Heuristic Approximating h+ Advanced Results Ov. Conclusion References

Questionnaire

Question!

In this domain, h+ is equal to?

(A): Manhattan Distance.

(C): Vertical distance.

(B): Horizontal distance.

(D): h∗.

Koehler and Torralba Artificial Intelligence Chapter 14: Planning, Part II 40/70
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Building Relaxed Planning Graph

Computing the optimal relaxed plan is still NP hard

But we can do something simpler

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

Relaxation
Heuristics

Template

hmax
hadd
hFF
Comparison &
practice

Graphical “interpretation”: Relaxed planning
graphs

Build a layered reachability graph P0, A0, P1, A1, . . .

P0 = {p ∈ I}
Ai = {a ∈ A | pre(a) ⊆ Pi}

Pi+1 = Pi ∪ {p ∈ add(a) | a ∈ Ai}

Terminate when G ⊆ Pi
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Example

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

Relaxation
Heuristics

Template

hmax
hadd
hFF
Comparison &
practice

Running example

I = {a = 1, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0}
a1 = 〈{a}, {b, c}, ∅〉
a2 = 〈{a, c}, {d}, ∅〉
a3 = 〈{b, c}, {e}, ∅〉
a4 = 〈{b}, {f}, ∅〉
a5 = 〈{d}, {g}, ∅〉

G = {c = 1, d = 1, e = 1, f = 1, g = 1}
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Relaxed Planning Graph

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

Relaxation
Heuristics

Template

hmax
hadd
hFF
Comparison &
practice

Running example: Relaxed planning graph

a0

b0

c0

d0

e0

f0

g0

h0

a1

b1

c1

d1

e1

f1

g1

h1

a2

b2

c2

d2

e2

f2

g2

h2

a3

b3

c3

d3

e3

f3

g3

h3

a1

b1

c1

a1

a2

b2

c2

d2

e2

f2

a1

a2

a3

a4

a3

b3

c3

d3

e3

f3

g3

a1

a2

a3

a4

a5

a6

G
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Domain Independent Automated Planning

Forward cost heuristic hmax

Computes a lower bound on the cost of achieving the most
expensive goal atom

Propagate cost layer by layer from start to goal

At actions, take maximum cost of achieving preconditions +1

At propositions, take the cheapest action to achieve it
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Computing heuristic hmax

Automated
(AI) Planning

Introduction
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Summary

Logic is a powerful language for describing diverse AI problems

Situation calculus is a logical formalism for reasoning about
situations developing in time

Of-the-shelf logical reasoning methods, such as resolution, are
usable for problem-independent planning

However, expressivity goes against efficiency

The field of AI planning creates logical representations and
algorithms specially designed for planning

STRIPS is a simple, but powerful language for representing
planning problems

Logical representation of problems allows automated
construction of A* heuristics
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