Maximum augmenting sequence of spanning trees

Let G be an unempty simple undirected connected weighted graph, $G=(\mathrm{V}, \mathrm{E}, w)$, $w: \mathrm{E} \rightarrow\{0,1,2,3, \ldots\}$. In this problem, we suppose that the weights of all edges of G are mutually different.

At first, we describe the problem less formally. Let T_{1} be a spanning tree of G. The central part of the problem is to create another spanning tree of G, say T_{2}, which differs a little from T_{1} and which we will call an augment of \boldsymbol{T}_{1}. The process of creating T_{2} consists of the following:

1. Find a cheap edge e_{1} in T_{1}.
2. Find an expensive edge e_{2}, which belongs to G but not to T_{1}.
3. Remove the cheap edge e_{1} from T_{1} and insert the expensive edge e_{2} into T_{1}.

Steps 1.- 3. must be completed in such way that the resulting subgraph, now called T_{2}, will again be a spanning tree of G. Also, the weight of T_{2} must be bigger than the weight of T_{1} and maximum possible. As there can be more pairs of edges (e_{1}, e_{2}) which satisfy these conditions, we additionally demand that the weight $w\left(e_{1}\right)$ must also be maximum possible among those pairs of edges.

Image 1a. Graph G and its spanning trees T_{1} and T_{2}. T_{2} is an augment of T_{1}.

Image 1b. T_{2} is not an augment of T_{1}.

Image 1c. T_{2} is not an augment of T_{1}.

Example. In the image above there is a highlighted spanning tree T_{1} of the graph G. To create a spanning tree T_{2} (also highlighted) which is an augment of T_{1} we chose the pair of edges ($\{\mathrm{C}, \mathrm{E}\},\{\mathrm{D}, \mathrm{G}\}$). The weight of T_{2} is then 45. This can be seen in the image 1a. We cannot choose, for example, the pair ($\{C, D\},\{B, D\}$) because the weight of T_{2} would be only 38 as can be seen in the image 1 b . Also, as illustrated in the image 1 c , we cannot choose the pair ($\{A, C\},\{B, D\}$) because although the weight of T_{2} would be 45 , which is maximum possible, the weight of the edge $\{A, C\}$ is less than the weight of the first edge of the pair $(\{C, E\},\{D, G\})$ used in the image 1a.

For the sake of completeness we provide also a formal definition of the augment tree. You may skip this section if the informal description is sufficient for you.
Let T be a spanning tree of G. We say that an ordered pair of edges $\left(e_{1}, e_{2}\right) \in \mathrm{E} \times \mathrm{E}$ is a \boldsymbol{T}-augmenting pair of edges if both following conditions hold:

1. $e_{1} \in \mathrm{E}(T), e_{2} \in \mathrm{E}(G)-\mathrm{E}(T)$.
2. The difference $w\left(e_{2}\right)-w\left(e_{1}\right)$ is positive and maximum possible.

We say that a T-augmenting pair of edges $\left(e_{1}, e_{2}\right)$ is a proper T-augmenting pair if the value of $w\left(e_{1}\right)$ is maximum among all T-augmenting pairs of edges.
Let T_{1} and T_{2} be two spanning trees of a G. We say that T_{2} is an augment of $\boldsymbol{T}_{\mathbf{1}}$ if there is a proper T_{1}-augmenting pair $\left(e_{1}, e_{2}\right)$ such that $\mathrm{E}\left(T_{2}\right)=\left\{\mathrm{E}\left(T_{1}\right)-e_{1}\right\} \cup e_{2}$.

We say that a sequence $\left(T_{1}, T_{2}, \ldots, T_{D}\right),(D>0)$ of spanning trees of G is a maximum augmenting sequence of \boldsymbol{G} when both following conditions hold:

1. T_{1} is a minimum spanning tree of G.
2. T_{k} is a augment of T_{k-1}, for $k=2,3, \ldots, D$.

Note that for some values of D the maximum augmenting sequence might be undefined.

The task

We have to find the weight of the last element of the maximum augmenting sequence of the given graph G. We consider the weight of a graph to be the sum of weights of all its edges.

Input

The first line of input contains three positive integers N, M, D separated by space. The integers represent the number of vertices, the number of edges and the value D specified above. Next, there are M lines, each specifies one edge by three integers a, b, c separated by space. The integers a and b represent the edge $\{a, b\}$ and c represent its weight. We suppose that the vertices of the graph are labeled $0,1, \ldots N-1$. Input values satisfy $D \leq N \leq 2000$.

Output

The output consists of a single line containing the weight of the last element of the maximum augmenting sequence $\left(T_{1}, T_{2}, \ldots, T_{D}\right)$ of the input graph. The sequence is always defined.

Example 1
Input
10133
016
1210
234
345
569
671
788
893
0513
167
272
3811
4912

Output
64
Image 2. The picture shows the maximum augmenting sequence $\left(T_{1}, T_{2}, T_{3}\right)$ of the input graph in Example 1. The edges of the spanning trees are highlighted.
Example 2

Input

7217
200
323
425
507
649
4111
3013
4315
3117
5119
1021
2123
4025
6527
5429
6331
5233
5335
6237
6139
6041

