Shortcut edges

We say that an edge (x, y) in a directed simple graph *G* is a *shortcut edge* when there is a path in *G* from *x* to *y* which length is at least 2. Let the *cost* of a shortcut edge (x, y) be the length of the longest path from *x* to *y* in *G*.

The task

Given a directed acyclic graph G determine the sum of costs of all its shortcut edges.

Input

The first line of input contains a single positive integer *N* representing the number of vertices of the input graph *G*. We suppose that the vertices of *G* are labeled 0, 1, ..., N - 1. Next follow the lines containing the list of edges of *G*. Each line contains two integers *a*, *b* separated by space and representing the edge (a, b). The list is terminated by a line which does not represent an edge and which contains two zeroes separated by space. The edges in the list are not in any particular order. It holds that $|V(G)| = N \le 10^4$, $|E(G)| \le 8 \cdot 10^5$.

Output

The output contains one text line with an integer equal to the sum of costs of all shortcut edges in the input graph.

Example 1

Input	
9	
5 4	
5 1	
5 6	
6 2	(0)
6 7	
7 3	2
7 8	
3 2	
3 0	6 3
3 8	$4 \xrightarrow{7} 5 \xrightarrow{6} 7 \xrightarrow{2} 8$
2 0	
2 1	
0 1	Image 1. The image depicts the graph in Example 1,
1 4	the shortcut edges are highlighted together with their costs.
0 0	5 5 6

Output

22

Example 2

Input

Output

2