Shortcut edges

We say that an edge (x, y) in a directed simple graph G is a shortcut edge when there is a path in G from x to y which length is at least 2. Let the cost of a shortcut edge (x, y) be the length of the longest path from x to y in G.

The task

Given a directed acyclic graph G determine the sum of costs of all its shortcut edges.

Input

The first line of input contains a single positive integer N representing the number of vertices of the input graph G. We suppose that the vertices of G are labeled $0,1, \ldots, N-1$. Next follow the lines containing the list of edges of G. Each line contains two integers a, b separated by space and representing the edge (a, b). The list is terminated by a line which does not represent an edge and which contains two zeroes separated by space. The edges in the list are not in any particular order. It holds that $|V(G)|=N \leq 10^{4},|E(G)| \leq 8 \cdot 10^{5}$.

Output

The output contains one text line with an integer equal to the sum of costs of all shortcut edges in the input graph.

Example 1
 Input

9
54
51
56
62
67
73
78
32
30
38
20
21
01
14
00

Output

Image 1. The image depicts the graph in Example 1, the shortcut edges are highlighted together with their costs.

Example 2

Input
200
150151
151152
150152
153154
00

Output

2

