Similar weighted binary rooted trees

First, let us introduce some simple notation.
Let x be a node in a binary rooted tree.
We denote the left child of x by the symbol $x . L$ and the right child of x by the symbol $x . R$.
If $x . L$ exists then by the symbol $x . w L$ we denote the weight of the edge $(x, x . L)$.
If $x . L$ does not exist then by the symbol $x . w L$ we denote the positive infinity $+\infty$.
If $x . R$ exists then by the symbol $x . w R$ we denote the weight of the edge $(x, x . R)$.
If $x . R$ does not exist then by the symbol $x . w R$ we denote the positive infinity $+\infty$.
Let us also denote the left subtree of x by the symbol x.LST and the right subtree of x by the symbol x.RST.
We remind you that any unempty subtree of a tree T consists of a node y in T and all descendants of y in T.
Let $T 1$ and $T 2$ be two edge-weighted binary rooted trees. Let us denote their respective roots by the symbols $R 1$ and $R 2$. We say that $T 1$ and $T 2$ are similar and denote this fact by the symbol $T 1 \sim T 2$ if and only if one of the following conditions holds:

1. Both $T 1$ and $T 2$ are empty trees.
2. Both $T 1$ and $T 2$ are unempty and it holds that

$$
\begin{aligned}
& ((R 1 . \mathrm{LST} \sim R 2 . \mathrm{LST}) \&(R 1 . \mathrm{RST} \sim R 2 . \mathrm{RST}) \&(R 1 . w L=R 2 . w L) \&(R 1 . w R=R 2 . w R)) \text { OR } \\
& ((R 1 . \mathrm{LST} \sim R 2 . \mathrm{RST}) \&(R 1 . \mathrm{RST} \sim R 2 . \mathrm{LST}) \&(R 1 . w L=R 2 . w R) \&(R 1 . w R=R 2 . w L)) .
\end{aligned}
$$

If two edge-weighted binary rooted trees $T 1$ and $T 2$ are not similar we say that $T 1$ and $T 2$ are dissimilar.

The task

We are given an unempty edge-weighted binary rooted tree T. We have to find how many mutually dissimilar subtrees are there in T. We remind you that each tree is a subtree of itself and also that the empty tree is a subtree of any tree.

Input

There are more lines of input specifying an unempty edge/weighted binary rooted tree.
The first line contains an integer N representing the number of nodes in the tree, $1 \leq N \leq 10^{6}$. It is supposed that the nodes of the tree are labeled by integers from 0 to $N-1$.
Next there are $N-1$ lines of input, each line specifies one edge of the tree. Each line contains four integer values $N 1, D$, $N 2, \mathrm{~V}$ in this order separated by spaces. Node with label $N 1$ is the parent of the node with label $N 2, V$ is the weight of the edge ($N 1, N 2$). Values of D can be only 0 or 1 , if $D=0$ then $N 2=N 1 . L$, if $D=1$ then $N 2=N 1 . R$. All edge weights are positive integers not exceeding 10^{9}. The label of the root is not explicitly specified in the input, nevertheless, the label can be derived from the input list of edges.

Output

Output is a single text line containing one number which represents the number of mutually dissimilar subtrees of the input tree.

Example 1

Input
1

Output
2

Example 2

Input
5
01120
11230
21340
31450
Output
6

Example 3

Input
7
6042
4002
4113
6152
5022
5133

Output
4
Example 4
Input
18
0011
1031
3075
$\begin{array}{llll}7 & 1 & 15 & 7\end{array}$
3188
1141
4095
90167
41108
0121
2051
50118
51125
$\begin{array}{llll}12 & 17 & 17\end{array}$
2161
60131
61141
Output
8

