Finite and infinite languages

Let us recall some necessary definitions. The concepts defined here are probably very well known to you, we provide the definitions just for the sake of completness.

A finite automaton X is a five-tuple $\left(A, S, S_{0}, \delta, F\right)$ where
A is an alphabet consisting of M ordered characters $a_{0}<a_{1}<\ldots a_{M-1},(1 \leq M<\infty)$,
S is an unempty set of states,
S_{0} is a start state, $\mathrm{S}_{0} \in \mathrm{~S}$,
δ is a transition function $\delta: S \times A \rightarrow \boldsymbol{P}(\mathrm{~S})$,
F is an unempty subset of S, it is a set of final states.
Symbol $\boldsymbol{P}(\mathrm{S})$ denotes the power set of S, i.e. the set of all subsets of S including S itself and empty set.
Note that this is a definition of nondeterministic finite automaton.
We denote by symbol $L(X)$ the language accepted by automaton X.

Lexicographical order of elements of A^{*} is induced by the order of characters of A as follows:
For any two words $\mathrm{w} 1, \mathrm{w} 2 \in \mathrm{~A}^{*}, \mathrm{w} 1 \neq \mathrm{w} 2$, we say that w 1 is lexicographically smaller than w 2 and denote this fact by $w 1<_{\text {lex }} w 2$ if either of the following holds

1. $w 1$ is prefix of $w 2$ and length($w 1$) < length($w 2$),
2. $w 1$ and $w 2$ are not empty words and $w 1$ is not a prefix of $w 2$ and $a<b$, where a, resp. b is the character in alphabet A immediately following the longest common prefix of $w 1$ and $w 2$ in the word $w 1$, resp $w 2$. Note that longest common prefix might be empty word in which case a, resp. b are the first characters of w 1 , resp. w2.

The task

When language $L(X)$ is not empty, we define the minimal word $\operatorname{MINWL}(X) \in L(X)$ as follows
$\forall \mathrm{w} \in \mathrm{L}(\mathrm{X}): \mathrm{w} \neq \mathrm{MINWL}(\mathrm{X}) \Rightarrow($ (length(MINWL(X) \leq length $(\mathrm{w}))$ and

$$
\left.\left((\text { length }(\operatorname{MINWL}(X))=\text { length }(w)) \Rightarrow\left(\mathrm{MINWL}(X)<_{\text {lex }} w\right)\right)\right) .
$$

When language $L(X)$ is not empty and finite, we define the maximal word MAXWL(X) $L(X)$ as follows
$\forall \mathrm{w} \in \mathrm{L}(\mathrm{X}): \mathrm{w} \neq \mathrm{MAXWL}(\mathrm{X}) \Rightarrow($ (length(MAXWL$(\mathrm{X}) \geq$ length $(\mathrm{w}))$ and

$$
\left.\left((\text { length }(\operatorname{MAXWL}(X))=\text { length }(w)) \Rightarrow\left(\mathrm{w}<_{\text {lex }} \operatorname{MAXWL}(X)\right)\right)\right)
$$

When $L(X)$ is empty, both $\operatorname{MINWL}(X)$ and $\operatorname{MAXWL}(X)$ are empty words.
We are given a nondeterministic finite automaton X. We have to decide if $L(X)$ is finite. When $L(X)$ is finite we have to find word $\operatorname{MAXWL}(X)$. When $L(X)$ is not finite we have to find word MINWL(X).

Input

Let J be any finite set of k integers ($k \geq 0$). We define PAL_set_listing of J to be a sequence of $k+1$ integers where k is the first element of the sequence followed by elements of J in arbitrary order.
Input specifies NFA $X=(A, S, S 0, \delta, F)$. We assume that $S=\{0,1,2 \ldots, N-1\}(N>0), S_{0}=0$. We also assume that A is a subset of $\left\{' a ', ~ ' b ', \ldots . . z^{\prime}\right\}, A=\left\{a_{0}, a_{1} \ldots, a_{M-1}\right\}=\{' a ', ~ ' b ', \ldots\}, 1 \leq M \leq 26, ' a '=a_{0}<' b '=a_{1}<\ldots$.
There are two formats of input.
First line of input always contains three positive integers $N, M, Q . N=|S|, M=|A|, Q \in\{1,2\}$. Q specifies the format in which transition function δ is defined.
If $Q=1$ then are exactly N following input lines which completely specify transition function δ. Each line starts with state number s_{j} and then contains M PAL_set_listings (defined above) of sets $\delta\left(s_{j}, a_{0}\right), \delta\left(s_{j}, a_{1}\right), \ldots . \delta\left(s_{j}, a_{M-1}\right)$ in this order. If $Q=2$ then the second input line contains six nonnegative integers B, C, T, U, V, W in this order separated by space. Transition function δ is defined for state $s j \in S$ and character $a_{h} \in A$ as follows:
$\delta\left(s_{j}, a_{h}\right)=\left\{1+s_{j}+\left(\left(B \times s_{j} \times k+C \times h\right) \bmod (N-\lfloor N / B\rfloor-1)\right) \mid k \in\left\{1,2, \ldots, H\left(s_{j}, h\right)\right\}, \quad\right.$ for $s_{j}<\lfloor N / B\rfloor$,
$\delta\left(s_{j}, a_{h}\right)=\left\{\lfloor N / B\rfloor+\left(\left(B \times s_{j} \times k+C \times h\right) \quad \bmod (N-\lfloor N / B\rfloor)\right) \quad \mid k \in\left\{1,2, \ldots, H\left(s_{j}, h\right)\right\}\right\}, \quad$ for $s_{j} \geq\lfloor N / B\rfloor$,
where
$H\left(s_{j}, h\right)=T+\left(\left(U \times s_{j}+V \times h\right) \bmod W\right), 2 \leq B<N, W \geq 1$.
Note that $\left|\delta\left(s_{j}, a_{\mathrm{h}}\right)\right| \leq \mathrm{H}\left(\mathrm{s}_{\mathrm{j}}, \mathrm{h}\right)$, the two values are not necessarily equal.
Last line of input contains PAL_set_listing of F .
All values on any input line are separated by one or more spaces.
You may assume that $N \times M=|S| \times|A| \leq 150000$.

Output

Output contains one text line. When input automaton X accepts finite language the output line first contains the string FINITE followed by one space followed by word MAXWL(X). When input automaton X accepts infinite language the output line first contains the string INFINITE followed by one space followed by word MINWL(X).
When MAXWL(X) or MINWL(X) is empty word it is substituted by the string EPSILON .

Example 1

Input
821
0110
10224
$\begin{array}{llll}2 & 1 & 3 & 0\end{array}$
$\begin{array}{llll}3 & 0 & 1 & 2\end{array}$
$4 \quad 2570$
51616
600

700
3467

Output
FINITE abab

The transition diagram of the automaton is depicted to the right of input data. .

Example 2

Input
821

0	1	1		0		
1	0			2	2	4
2	1	3		0		
3	0			1	2	
4	2	5	7		0	
5	1	6		1	6	
6	0			0		
7	0			0		
4	3	4	6	7		

Output
INFINITE ab

The transition diagram of the automaton is depicted to the right of input data. .
Note that it differs from example 1 only in finality of state 3.

Example 3

Input
832
21100112
235

Output
FINITE bc

The transition diagram of the automaton is depicted to the right of input data. .

Example 4

Input
1132
3102112
2610

Output
INFINITE ca

The transition table of the input automaton is

	a	b	c	
state				
0	$[1]$	$[4]$	$[7]$	
1	$[4,5,8]$	$[4,8]$	$[3,4,7]$	
2	$[8,9]$	$[3,4,5]$	$[7,8]$	
3	$[4,5,6]$	$[6,7]$	$[8,9,10]$	
4	$[3,7]$	$[5,9]$	$[3,7]$	
5	$[8,9,10]$	$[3,4]$	$[4,5,6]$	
6	$[5,7]$	$[3,7,9]$	$[3,9]$	F
7	$[5,8,10]$	$[7,10]$	$[4,6,9]$	
8	$[3]$	$[5]$	$[7]$	
9	$[4,6,9]$	$[3,8]$	$[5,8,10]$	
10	$[7,9]$	$[3,7,9]$	$[3,5]$	F

