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� 2D tracking
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A probabilistic approach to tracking?

The lecture is rather a practitioner introduction.

� At a certain time we need decide about one state (position) of the
target object.

� Inner state representation can be arbitrary.

� Let represent the state of the object by probability density.

� We want to estimate the (hidden) density from (observable)
measurements.

� Representing of the probability density by particles is one of the
effective choices.

Particle filter: Particles at the input, measurements, update, . . . , particles
at the output.
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Particle filter in computer vision

� technique known outside computer vision for long

� popularized under the acronym Condensation in 1996 [4]

� Condensation stands for CONditional DENSity propagATION

� simple, easy to implement, robust . . .

� frequently used in many algorithms

� comprehensive overview [2]

� belongs to Monte Carlo Methods, see chapter 29 [6].
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Density propagation

1

1Figure from [1]
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Particle filtering

Input: St−1 =
{
(s(t−1)i, π(t−1)i)

}
, i = 1, 2, . . . , N .

Output: St and object state (position) if required

Workflow for time t

1. Resample data St−1 by using importance sampling.

2. Predict s̃(t)i, think about position and velocity model.

3. Uncertainty in the state change → noisify the predicted states.

4. Measure how well the predicted states fit the observation, and update
weights πt.

5. If needed compute the mean state (where is the target, actually?).

6. Update the prediction model if used.
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One condensation step

2

2Figure from [1]
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Importance sampling

Input: set of samples with associated probabilities

Ouput: new set of samples where the frequency depends proportionally on
their probabilities
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Importance sampling

video: importance sampling
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Example: 1–D tracking

video: 1–D tracking
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Example: 1–D tracking, closer look
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Application: 3D head tracking in multicamera
system

video
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3D head tracking in multicamera
system—essentials

Assume calibrated system, Pj, and motion segmentated projections

video

� Head modeled as ellipsoid

� State comprises position, orientation, velocity vector . . .

� Ellipsoid project as ellipses into cameras

� We measure how far are the ellipses from contours

We will go step by step . . .
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Ellipsoid and its 2D projection

Quadric surface Q

X>QX = 0

project to a (line) conic

C∗ = PQ∗P>

point conic C which is dual to C∗

u>Cu = 0

Dual matrix:

C∗ = det(C)C−>

3

3Image from [3]
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Measurement in (multiple) images

Remeber, we can efficiently project outline of the ellipsoid to images.

video: segmented data video: distance map to edges

Distance map

� distance map computed just once per image

� measuring samples is just reading out values from a table
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Head 3D tracking — results

video: 3D localization results video: example of particles convergence

Problem: 3D position only, no orientation . . .
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Learning appearance

video: Learning head appearance

� Combines stereo and gradient based localization.

� Explanation of the principle [PDF; www4]. More in [7].

4http://cmp.felk.cvut.cz/multicam/Demos/3Dtracking.html
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3D tracking — including appearance

See [5] for details.
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3D tracking — similarity measure

Oponent colors

a =
1

2
(R−G) , b =

1

4
(2B −R−G) , a, b ∈ 〈−128, 127〉.

Histogram of oponent colors
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Bhattacharya distance

bhatta(I,M) =
∑

k,l

√
Ik,l · Mk,l .
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3D tracking — Results

video: 3D tracking including orientation

No post-processing, no smoothing applied.
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2D tracking — object modeled by color histogram

video
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